
   
   
  

Document: AAR-VID11486  © 2024 Gossamer Security Solutions, Inc. 
  All rights reserved. 

 

       
 

www.GossamerSec.com  

 
Assurance Activity Report for 

 Zebra Devices on Android 13 

 
Version 0.2 

07/26/2024 

 

Prepared by: 
Gossamer Security Solutions 

Accredited Security Testing Laboratory – Common Criteria Testing 
Columbia, MD 21045 

 

Prepared for: 
National Information Assurance Partnership 

Common Criteria Evaluation and Validation Scheme 
 

 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 2 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

REVISION HISTORY 

Revision Date Authors Summary 

Version 0.1 06/20/2024 Gossamer Initial draft 

Version 0.2 07/26/2024 Gossamer Updated for ECR comments 

    

    

    

    

    

 

The TOE Evaluation was Sponsored by: 
Zebra Technologies Corporation 
3 Overlook Point 
Lincolnshire, IL 60069-4302 
USA 

 
 Evaluation Personnel: 

• Raymond Smoley 

• Matai Spivey 

• Rizheng Sun 
 
Common Criteria Versions: 

• Common Criteria for Information Technology Security Evaluation Part 1: Introduction, Version 3.1, Revision 5, 
April 2017 

• Common Criteria for Information Technology Security Evaluation Part 2: Security functional components, Version 
3.1, Revision 5, April 2017 

• Common Criteria for Information Technology Security Evaluation Part 3: Security assurance components, Version 
3.1, Revision 5, April 2017 

 
Common Evaluation Methodology Versions: 

• Common Methodology for Information Technology Security Evaluation, Evaluation Methodology, Version 3.1, 
Revision 5, April 2017 

 

  



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 3 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

TABLE OF CONTENTS 

1. Introduction ...................................................................................................................................................................... 8 

1.1 Device Equivalence ................................................................................................................................................. 8 

1.2 CAVP Certificates .................................................................................................................................................. 11 

2. Protection Profile SFR Assurance Activities .................................................................................................................... 14 

2.1 Security audit (FAU) .............................................................................................................................................. 14 

2.1.1 Audit Data Generation  (MDFPP33:FAU_GEN.1) .............................................................................................. 14 

2.1.2 Audit Data Generation (Bluetooth) - per TD0707  (BT10:FAU_GEN.1/BT) ....................................................... 16 

2.1.3 Audit Data Generation (Wireless LAN)  (WLANC10:FAU_GEN.1/WLAN) ......................................................... 16 

2.1.4 Audit Review  (MDFPP33:FAU_SAR.1) .............................................................................................................. 18 

2.1.5 Audit Storage Protection  (MDFPP33:FAU_STG.1) ........................................................................................... 19 

2.1.6 Prevention of Audit Data Loss  (MDFPP33:FAU_STG.4) ................................................................................... 20 

2.2 Cryptographic support (FCS) ................................................................................................................................. 20 

2.2.1 Cryptographic Key Generation  (MDFPP33:FCS_CKM.1) .................................................................................. 20 

2.2.2 Cryptographic Key Generation (Symmetric Keys for WPA2/WPA3 Connections)  (WLANC10:FCS_CKM.1/WPA)

 24 

2.2.3 Cryptographic Key Establishment  (MDFPP33:FCS_CKM.2/LOCKED) ............................................................... 26 

2.2.4 Cryptographic Key Establishment  (MDFPP33:FCS_CKM.2/UNLOCKED) .......................................................... 28 

2.2.5 Cryptographic Key Distribution (Group Temporal Key for WLAN)  (WLANC10:FCS_CKM.2/WLAN) ................ 31 

2.2.6 Cryptographic Key Support  (MDFPP33:FCS_CKM_EXT.1) ............................................................................... 32 

2.2.7 Cryptographic Key Random Generation  (MDFPP33:FCS_CKM_EXT.2) ............................................................ 34 

2.2.8 Cryptographic Key Generation  (MDFPP33:FCS_CKM_EXT.3) .......................................................................... 40 

2.2.9 Key Destruction  (MDFPP33:FCS_CKM_EXT.4) ................................................................................................. 46 

2.2.10 TSF Wipe  (MDFPP33:FCS_CKM_EXT.5) ....................................................................................................... 49 

2.2.11 Salt Generation  (MDFPP33:FCS_CKM_EXT.6) ............................................................................................. 51 

2.2.12 Bluetooth Key Generation  (BT10:FCS_CKM_EXT.8) .................................................................................... 51 

2.2.13 Cryptographic Operation  (MDFPP33:FCS_COP.1/CONDITION) .................................................................. 52 

2.2.14 Cryptographic Operation  (MDFPP33:FCS_COP.1/ENCRYPT) ....................................................................... 54 

2.2.15 Cryptographic Operation  (MDFPP33:FCS_COP.1/HASH) ............................................................................ 59 

2.2.16 Cryptographic Operation  (MDFPP33:FCS_COP.1/KEYHMAC) ..................................................................... 61 

2.2.17 Cryptographic Operation  (MDFPP33:FCS_COP.1/SIGN) ............................................................................. 61 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 4 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

2.2.18 HTTPS Protocol  (MDFPP33:FCS_HTTPS_EXT.1) ........................................................................................... 63 

2.2.19 Initialization Vector Generation  (MDFPP33:FCS_IV_EXT.1) ........................................................................ 64 

2.2.20 Random Bit Generation - per TD0677  (MDFPP33:FCS_RBG_EXT.1) ........................................................... 64 

2.2.21 Cryptographic Algorithm Services  (MDFPP33:FCS_SRV_EXT.1) .................................................................. 67 

2.2.22 Cryptographic Algorithm Services  (MDFPP33:FCS_SRV_EXT.2) .................................................................. 67 

2.2.23 Cryptographic Key Storage  (MDFPP33:FCS_STG_EXT.1) ............................................................................. 68 

2.2.24 Encrypted Cryptographic Key Storage  (MDFPP33:FCS_STG_EXT.2) ............................................................ 71 

2.2.25 Integrity of Encrypted Key Storage  (MDFPP33:FCS_STG_EXT.3) ................................................................ 73 

2.2.26 TLS Protocol  (PKGTLS11:FCS_TLS_EXT.1) .................................................................................................... 74 

2.2.27 TLS Client Protocol  (PKGTLS11:FCS_TLSC_EXT.1) ........................................................................................ 74 

2.2.28 TLS Client Protocol (EAP-TLS for WLAN)  (WLANC10:FCS_TLSC_EXT.1/WLAN) ........................................... 80 

2.2.29 TLS Client Support for Mutual Authentication  (PKGTLS11:FCS_TLSC_EXT.2) ............................................. 83 

2.2.30 TLS Client Support for Supported Groups Extension (EAP-TLS for WLAN)  

(WLANC10:FCS_TLSC_EXT.2/WLAN) .............................................................................................................................. 84 

2.2.31 TLS Client Support for Renegotiation  (PKGTLS11:FCS_TLSC_EXT.4) ........................................................... 85 

2.2.32 TLS Client Support for Supported Groups Extension  (PKGTLS11:FCS_TLSC_EXT.5) .................................... 86 

2.2.33 Supported WPA Versions - per TD0710  (WLANC10:FCS_WPA_EXT.1) ....................................................... 86 

2.3 User data protection (FDP) ................................................................................................................................... 87 

2.3.1 Access Control for System Services  (MDFPP33:FDP_ACF_EXT.1) .................................................................... 87 

2.3.2 Access Control for System Resources  (MDFPP33:FDP_ACF_EXT.2) ................................................................ 93 

2.3.3 Protected Data Encryption  (MDFPP33:FDP_DAR_EXT.1) ................................................................................ 93 

2.3.4 Sensitive Data Encryption  (MDFPP33:FDP_DAR_EXT.2) .................................................................................. 95 

2.3.5 Subset Information Flow Control  (MDFPP33:FDP_IFC_EXT.1) ........................................................................ 98 

2.3.6 User Data Storage  (MDFPP33:FDP_STG_EXT.1) ............................................................................................ 100 

2.3.7 Inter-TSF User Data Transfer Protection (Applications)  (MDFPP33:FDP_UPC_EXT.1/APPS) ........................ 101 

2.3.8 Inter-TSF User Data Transfer Protection (Bluetooth)  (MDFPP33:FDP_UPC_EXT.1/BLUETOOTH) ................. 103 

2.4 Identification and authentication (FIA) ............................................................................................................... 105 

2.4.1 Authentication Failure Handling  (MDFPP33:FIA_AFL_EXT.1) ........................................................................ 105 

2.4.2 Bluetooth User Authorization  (BT10:FIA_BLT_EXT.1) ................................................................................... 108 

2.4.3 Bluetooth Mutual Authentication  (BT10:FIA_BLT_EXT.2) ............................................................................. 109 

2.4.4 Rejection of Duplicate Bluetooth Connections  (BT10:FIA_BLT_EXT.3) ......................................................... 110 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 5 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

2.4.5 Secure Simple Pairing  (BT10:FIA_BLT_EXT.4) ................................................................................................ 110 

2.4.6 Trusted Bluetooth Device User Authorization  (BT10:FIA_BLT_EXT.6) .......................................................... 111 

2.4.7 Untrusted Bluetooth Device User Authorization  (BT10:FIA_BLT_EXT.7) ...................................................... 112 

2.4.8 Port Access Entity Authentication  (WLANC10:FIA_PAE_EXT.1) .................................................................... 114 

2.4.9 Password Management  (MDFPP33:FIA_PMG_EXT.1) ................................................................................... 114 

2.4.10 Authentication Throttling  (MDFPP33:FIA_TRT_EXT.1) ............................................................................. 115 

2.4.11 Multiple Authentication Mechanisms  (MDFPP33:FIA_UAU.5) ................................................................. 116 

2.4.12 Re-Authenticating (Credential Change)  (MDFPP33:FIA_UAU.6/CREDENTIAL) ......................................... 118 

2.4.13 Re-Authenticating (TSF Lock)  (MDFPP33:FIA_UAU.6/LOCKED) ................................................................ 119 

2.4.14 Protected Authentication Feedback  (MDFPP33:FIA_UAU.7) .................................................................... 120 

2.4.15 Authentication for Cryptographic Operation  (MDFPP33:FIA_UAU_EXT.1) .............................................. 121 

2.4.16 Timing of Authentication  (MDFPP33:FIA_UAU_EXT.2) ............................................................................. 122 

2.4.17 X.509 Validation of Certificates - per TD0689  (MDFPP33:FIA_X509_EXT.1) ............................................. 123 

2.4.18 X.509 Certificate Validation  (WLANC10:FIA_X509_EXT.1/WLAN) ............................................................ 127 

2.4.19 X.509 Certificate Authentication  (MDFPP33:FIA_X509_EXT.2) ................................................................. 129 

2.4.20 X.509 Certificate Authentication (EAP-TLS for WLAN) - TD0703 applied  

(WLANC10:FIA_X509_EXT.2/WLAN) ............................................................................................................................ 130 

2.4.21 Request Validation of Certificates  (MDFPP33:FIA_X509_EXT.3) ............................................................... 132 

2.4.22 Certificate Storage and Management  (WLANC10:FIA_X509_EXT.6) ........................................................ 133 

2.5 Security management (FMT) .............................................................................................................................. 134 

2.5.1 Management of Security Functions Behavior  (MDFPP33:FMT_MOF_EXT.1) ............................................... 134 

2.5.2 Specification of Management Functions  (MDFPP33:FMT_SMF.1) ................................................................ 137 

2.5.3 Specification of Management Functions  (BT10:FMT_SMF_EXT.1/BT) .......................................................... 155 

2.5.4 Specification of Management Functions (WLAN Client) - per TD0667  (WLANC10:FMT_SMF_EXT.1/WLAN)

 158 

2.5.5 Specification of Remediation Actions  (MDFPP33:FMT_SMF_EXT.2) ............................................................. 159 

2.5.6 Current Administrator  (MDFPP33:FMT_SMF_EXT.3) .................................................................................... 160 

2.6 Protection of the TSF (FPT) ................................................................................................................................. 160 

2.6.1 Application Address Space Layout Randomization  (MDFPP33:FPT_AEX_EXT.1) .......................................... 160 

2.6.2 Memory Page Permissions  (MDFPP33:FPT_AEX_EXT.2) ............................................................................... 161 

2.6.3 Stack Overflow Protection  (MDFPP33:FPT_AEX_EXT.3) ................................................................................ 162 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 6 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

2.6.4 Domain Isolation  (MDFPP33:FPT_AEX_EXT.4) .............................................................................................. 163 

2.6.5 Kernel Address Space Layout Randomization  (MDFPP33:FPT_AEX_EXT.5) .................................................. 165 

2.6.6 Application Processor Mediation  (MDFPP33:FPT_BBD_EXT.1) ..................................................................... 167 

2.6.7 JTAG Disablement  (MDFPP33:FPT_JTA_EXT.1) ............................................................................................. 167 

2.6.8 Key Storage  (MDFPP33:FPT_KST_EXT.1) ....................................................................................................... 168 

2.6.9 No Key Transmission  (MDFPP33:FPT_KST_EXT.2) ......................................................................................... 169 

2.6.10 No Plaintext Key Export  (MDFPP33:FPT_KST_EXT.3) ................................................................................ 170 

2.6.11 Self-Test Notification  (MDFPP33:FPT_NOT_EXT.1) ................................................................................... 171 

2.6.12 Reliable time stamps  (MDFPP33:FPT_STM.1) ........................................................................................... 172 

2.6.13 TSF Cryptographic Functionality Testing  (MDFPP33:FPT_TST_EXT.1) ...................................................... 173 

2.6.14 TSF Integrity Checking (Post-Kernel)  (MDFPP33:FPT_TST_EXT.2/POSTKERNEL) ...................................... 175 

2.6.15 TSF Integrity Checking (Pre-Kernel)  (MDFPP33:FPT_TST_EXT.2/PREKERNEL) .......................................... 175 

2.6.16 TSF Cryptographic Functionality Testing (WLAN Client)  (WLANC10:FPT_TST_EXT.3/WLAN) ................... 177 

2.6.17 TSF Version Query  (MDFPP33:FPT_TUD_EXT.1) ....................................................................................... 179 

2.6.18 TSF Update Verification  (MDFPP33:FPT_TUD_EXT.2) ............................................................................... 180 

2.6.19 Application Signing  (MDFPP33:FPT_TUD_EXT.3) ...................................................................................... 182 

2.6.20 Trusted Update Verification  (MDFPP33:FPT_TUD_EXT.6) ........................................................................ 183 

2.7 TOE access (FTA) ................................................................................................................................................. 184 

2.7.1 TSF- and User-Initiated Locked State  (MDFPP33:FTA_SSL_EXT.1) ................................................................ 184 

2.7.2 Default TOE Access Banners  (MDFPP33:FTA_TAB.1) .................................................................................... 186 

2.7.3 Wireless Network Access  (WLANC10:FTA_WSE_EXT.1) ................................................................................ 187 

2.8 Trusted path/channels (FTP) ............................................................................................................................... 188 

2.8.1 Bluetooth Encryption  (BT10:FTP_BLT_EXT.1) ................................................................................................ 188 

2.8.2 Persistence of Bluetooth Encryption  (BT10:FTP_BLT_EXT.2) ........................................................................ 189 

2.8.3 Bluetooth Encryption Parameters (BR/EDR) - per TD0640  (BT10:FTP_BLT_EXT.3/BR) ................................. 190 

2.8.4 Bluetooth Encryption Parameters (LE)  (BT10:FTP_BLT_EXT.3/LE) ................................................................ 191 

2.8.5 Trusted Channel Communication  (MDFPP33:FTP_ITC_EXT.1) ...................................................................... 193 

2.8.6 Trusted Channel Communication (Wireless LAN)  (WLANC10:FTP_ITC_EXT.1/WLAN) .................................. 195 

3. Protection Profile SAR Assurance Activities ................................................................................................................. 198 

3.1 Development (ADV) ............................................................................................................................................ 198 

3.1.1 Basic Functional Specification  (ADV_FSP.1) .................................................................................................. 198 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 7 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

3.2 Guidance documents (AGD)................................................................................................................................ 198 

3.2.1 Operational User Guidance  (AGD_OPE.1) ..................................................................................................... 198 

3.2.2 Preparative Procedures  (AGD_PRE.1) ........................................................................................................... 199 

3.3 Life-cycle support (ALC) ...................................................................................................................................... 199 

3.3.1 Labeling of the TOE  (ALC_CMC.1) .................................................................................................................. 199 

3.3.2 TOE CM Coverage  (ALC_CMS.1) .................................................................................................................... 200 

3.3.3 Timely Security Updates  (ALC_TSU_EXT.1) ................................................................................................... 200 

3.4 Tests (ATE) .......................................................................................................................................................... 201 

3.4.1 Independent Testing - Conformance  (ATE_IND.1) ........................................................................................ 201 

3.5 Vulnerability assessment (AVA) .......................................................................................................................... 202 

3.5.1 Vulnerability Survey  (AVA_VAN.1) ................................................................................................................ 202 

 

  



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 8 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

1. INTRODUCTION 

This document presents evaluations results of the Zebra Mobile Devices on Android 13 

MDFPP33/BT10/PKGTLS11/WLANC10 evaluation.  This document contains a description of the assurance activities and 

associated results as performed by the evaluators. 

1.1 DEVICE EQUIVALENCE 

The TOE encompasses mobile devices that support enterprises and individual users alike and this evaluation includes the 

following models and versions. 

Product Model # CPU Arch Kernel Android OS 
version 

Security Patch 
Level 

660 Mobile Handhelds TC57 Qualcomm SDM660 ARMv8 4.19 Android 13.0 February 2024 

6490 Mobile Handhelds TC58 Qualcomm QCM6490 ARMv8 5.4 Android 13.0 February 2024 

6375 Mobile Handhelds ET45 Qualcomm SM6375 ARMv8 5.4 Android 13.0 February 2024 

5430 Mobile Handheld TC27 Qualcomm QCM5430 ARMv8 5.4 Android 13.0 February 2024 

 

The following other, equivalent models are included in the evaluation as they utilize the same hardware components and 

same image as the above devices (i.e., each CPU model has one image): 

 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 9 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

CPU Wireless 
Chipset Model # Cellular Description 

SDM660 WCN3990 CC600 WLAN 5” Landscape Tablet-style kiosk device, No Camera 

CC6000 WLAN 10” CC600 with optional camera, optional orientation 

ET51 WLAN 8” / 10” Tablet 

ET56 WWAN Data Only ET51 with WWAN Data Only 

L10A WWAN Data Only 10” Ultra Rugged Tablet 

MC20 WLAN 4” Keypad device, Japan Only 

MC9300 WLAN 4.3” Ultra Rugged Keypad device 

(SE965, SE4750, SE4770, SE4750 DPM, OR SE4850) 

PS20 WLAN 4” Personal Shopper, (SE2100 Scanner) or (SE4710 Scanner 

with Front Facing Camera) 

TC52 WLAN 5” Phone with EMMC Flash, SE4710 

TC52-HC WLAN TC52 made from healthcare grade plastics 

TC52x WLAN TC52 with UFS Flash and SE4720 instead of SE4710 

TC52x-HC WLAN TC52x made from healthcare grade plastics 

TC57 WWAN / Cellular TC52 with WWAN / Cellular 

TC57x WWAN / Cellular TC52x with WWAN / Cellular 

TC72 WLAN 

 

4.7” Ultra Rugged phone with (either SE4750, SE4750 + 1 

SAM, or SE4770), NFC - Single SAM support for Calypso, 

Felica and Mifare technology. 

TC77 WWAN / Cellular TC72 with WWAN / Cellular 

1 SAM option is replaced with 2 SAM option, NFC - Dual 

SAM support for Calypso, Felica and Mifare technology. 

TC83 WLAN 4” Ultra Rugged Touch Computer/Gun Handler with either 

SE4750, SE4750 DPM, SE4770, or SE4850 

VC83 WLAN 8” / 10” Vehicle Mounted Computer with AZERTTY or 

QWERTY keyboard, Capacitive vs Heated Capacitive 

touchscreen, Outdoor readable vs standard display 

WT6300 WLAN 3.2” Glove-optimized Rugged Wearable 

WCN3980 

 

TC21 WLAN 5” Phone with both FFC&RFC Camera or RFC Camera, with 

either SE4100, SE4710, or Camera Data Scanning 

TC21-HC WLAN TC21 made from healthcare grade plastics 

Limited to Both FFC&RFC Camera with SE4100 options 

TC26 WWAN / Cellular TC21 with WWAN / Cellular  

TC26-HC WWAN / Cellular TC21-HC with WWAN / Cellular 

BCM43752 TC52ax WLAN TC52 with BCM43752, UFS Flash, SE55 Advanced Range 

SM6375 WCN3988 TC15 WWAN / Cellular 6.5” Phone with 5G, SE4710 or SE4100 or SE4710 + Dual 

WWAN. NFC – PN557 

TN28 WWAN / Cellular 6.5” Phone with 5G, SE4710 or SE4770, NFC – PN557 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 10 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

BCM43752 ET40 WLAN 8” / 10” Tablet, SE4100, NFC PN7160 

ET40HC WLAN 10” ET40 made from healthcare grade plastics 

ET45 WWAN Data Only ET40 with 5G and additional combos of size/RAM/storage 

ET45HC WWAN Data Only 10” ET45 made from healthcare grade plastics 

QCM5430 WCN6856 

 

HC20 WLAN 6” phone with front + rear camera, optional SE4720 

Made from healthcare grade plastics 

HC50 WLAN 6” Premium phone with SE4720, front + rear camera 

Made from healthcare grade plastics 

TC22 WLAN 6” Phone with front + rear camera, SE4710 or SE55 

TC27 WWAN / Cellular TC22 with WWAN / Cellular 

QCM6490 WCN6856 

 

ET60 WLAN 10” Tablet - SKU1: Standard screen/battery, SKU2: 

Additional Touch Screen Heater, no battery, SKU3: SKU1 + 

SE55 Scanner 

ET65 WWAN Data Only ET60 with 1 physical SIM and 1 eSIM, extended battery or 

standard battery or standard battery + SE55 

TC53 WLAN 6” phone with front + rear camera, either SE4770 or (SE5500 

and OIS in rear camera) 

TC58 WWAN / Cellular TC53 with WWAN / Cellular 

TC73 WLAN 6” phone with front + rear camera, with either SE4770 or 

(SE5500 and OIS in rear camera) 

TC78 WWAN / Cellular TC73 with WWAN / Cellular 

 

The above models may represent additional model-specific SKUs which vary by screen-size, RAM / Storage Capacity, battery 

capacity, base vs premium materials 

SE55, SE965, SE2100, SE4100, SE4710, SE4720, SE4750, SE4750 DPM, SE4770, SE4850, SE5500, and SE4850 are all 

Scan Engine code scanners manufactured by Zebra and their functionality is not included in the scope of this evaluation. 

Wireless Chipsets support the following: WCN3990 and WCN3980 - Wi-Fi 5, Bluetooth 5.0, WCN3988 - Wi-Fi 6, 

Bluetooth 5.0, BCM43752 - Wi-Fi 6, Bluetooth 5.1, and WCN6856 - Wi-Fi 6E, Bluetooth 5.3.  The Bluetooth MAP profile 

is not supported on devices without Cellular capabilities



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 11 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

 

1.2 CAVP CERTIFICATES 

The TOE performs cryptographic algorithms in accordance with the following NIST standards and has received the 

following CAVP algorithm certificates. 

The TOE’s BoringSSL Library (version 1.0) with both Processor Algorithm Accelerators (PAA) and without PAA) 
provides the following algorithms: 

SFR Algorithm NIST Standard Cert# 

FCS_CKM.1 (Key Gen) 
RSA IFC Key Generation – 
2048/3072 bits 

FIPS 186-4, RSA 
A1395 

 
ECDSA ECC Key Generation/Key 
Verification –  
P-256/384/521 

FIPS 186-4, ECDSA 
A1395 

FCS_CKM.2/LOCKED 
FCS_CKM.2/UNLOCKED 

RSA key establishment SP 800-56B Tested with 
known good 
implementation 

 KAS ECC – P-256/384/521 SP 800-56A A1395 

FCS_COP.1/ENCRYPT (AES) 
WLANC10:FCS_CKM.2/WLAN 

AES - 128/256 CBC, GCM, KW FIPS 197, SP 800-
38A/D/F 

A1395 

FCS_COP.1/HASH 
SHA Hashing - 1/256/384/512 

FIPS 180-4 
A1395 

FCS_COP.1/SIGN 
RSA Sign/Verify - 2048/3072 bits 

FIPS 186-4, RSA 
A1395 

 
ECDSA Sign/Verify - P-
256/384/521 

FIPS 186-4, ECDSA 
A1395 

FCS_COP.1/KEYHMAC 
WLANC10:FCS_CKM.2/WLAN 

HMAC-SHA -1/256/384/512 
FIPS 198-1 & 180-4 

A1395 

FCS_RBG_EXT.1 (Random) 
DRBG Bit Generation – 256 bits 

SP 800-90A (Counter) 
A1395 

Table 1 - BoringSSL Cryptographic Algorithms 

Android’s LockSettings service (version 77561fc30db9aedc1f50f5b07504aa65b4268b88) provides the TOE’S SP 
800-108 key based key derivation function for deriving KEKs. 

SFR Algorithm NIST Standard Cert# 

FCS_CKM_EXT.3 LockSettings service KBKDF 256 bits SP 800-108 A1978 

Table 2 – LockSettings Service Cryptographic Algorithms 

The devices contain unique Wi-Fi chipsets based on the model of the device. The chipsets are listed here. 

Device Wi-Fi Chipset Wi-Fi Chipset Details 

• TC52ax 
• MC33ax 
• ET40 
• ET40HC 
• ET45 
• ET45HC 

Broadcom BCM43752 
Incorporates Broadcom’s Crypto 
Hardware Module 
aes_core_gcm_simult_5_cycle.vhd 

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34004
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34004
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34004
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34004
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34004
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34004
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34004
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34004
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34004
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34587


 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 12 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Device Wi-Fi Chipset Wi-Fi Chipset Details 

• TC52 
• TC52-HC 
• TC52x 
• TC52x-HC 
• TC57 
• TC72 
• TC77 
• TC57 
• TC57x 
• TC83 
• MC3300x 
• MC33xR 
• MC9300 
• PS20 
• EC30 
• WT6300 
• EC50 
• EC55 
• ET51 
• ET56 
• L10A 
• CC600 
• CC6000 
• VC83 

Qualcomm WCN3990 
Incorporates the Qualcomm AES 
engine-256w 

• TC21   
• TC21-HC  
• TC26   
• TC26-HC   
• MC2200     
• MC2700    
• MC20  

Qualcomm WCN3980 
Incorporates the Qualcomm AES 
engine-256w 

• TC53 
• TC73 
• ET60 
• TC58 
• TC78 
• ET65 
• TC73 
• TC78 
• TC27 
• TC22 
• HC20 
• HC50 
• Panther 
• Henley 

Qualcomm WCN6856 
Incorporates Qualcomm's Lithium AES 
engine-256w 

• TC15 
• TN28 

Qualcomm WCN3988 
Incorporates the Qualcomm AES 
engine-256w 

Table 3 - Wi-Fi Hardware Components 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 13 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

 

The Wi-Fi chipsets provides the following algorithms. 
 

Algorithm  NIST Standard SFR Reference Cert# 

AES 128 CCM (Qualcomm Wi-Fi) FIPS 197, SP 800-38C FCS_COP.1/ENCRYPT 5663, 4748 

AES 128 CCM (Broadcom Wi-Fi) FIPS 197, SP 800-38C FCS_COP.1/ENCRYPT C1025 

Table 4 - Wi-Fi Chip Algorithms 

 
The TOE’s application processor (Snapdragon 695 [SM6375], SDM660, and QCM6490) provide the following 
cryptographic algorithms. 
 

SFR Algorithm NIST Standard Cert# 

FCS_COP.1(1) (AES) (QTI CEC*) AES 128/256 CBC FIPS 197, SP 800-38A 
5383, A805, 
A2752 

FCS_COP.1(1) (AES) (QTI UFS**) AES 128/256 XTS FIPS 197, SP 800-38E 
5393, 5394, 
A771, A772 

FCS_COP.1(2) (Hash) (QTI CEC) SHA 1/256 Hashing FIPS 180-4 
4319, A805, 
A2752 

FCS_COP.1(2) (Hash) (DRBG) SHA 256 Hashing FIPS 180-4 
4333/4316, 
A1630, 
A2753 

FCS_COP.1(4) (Keyed Hash) (QTI CEC) HMAC-SHA-1/256 FIPS 198-1 & 180-4 
3566, A805, 
A2752 

FCS_RBG_EXT.1 (Random) (DRBG) 
DRBG Bit Generation 
256 bits 

SP 800-90A (Hash-256) 
2095, A1630, 
A2753 

*QTI CEC – Qualcomm Technologies, Inc. Crypto Engine Core v5.3.4 for SDM 660, v5.6.0 for SM6375 and QCM6490 
**QTI UFS - Qualcomm Technologies, Inc. Inline Crypto Engine (UFS) v3.0.0 for SDM660, v3.2.0 for SM6375 and QCM6490 

Table 5 - SoC Cryptographic Algorithms 

 

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=21654
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=8370
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=31422
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=9411
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33400
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=35363
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=9458
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=9459
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=13229
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=13230
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=9411
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33400
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=35363
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=9460
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=9410
https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/details?source=A&number=1630
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=35364
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=9411
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33400
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=35363
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=9460
https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/details?source=A&number=1630
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=35364


 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 14 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

2. PROTECTION PROFILE SFR ASSURANCE ACTIVITIES 

This section of the AAR identifies each of the assurance activities included in the claimed Protection Profile and 

describes the findings in each case. 

The following evidence was used to complete the Assurance Activities: 

• Zebra Mobile Devices on Android 13 Security Target, version 0.4, 07/26/2024 

• The Administrator Guidance is composed of the following documents, collectively referred to as the Admin 
Guide.  The only difference between the Guides is the product identification. 

o Administrator Guidance for Zebra Devices (SD660), Version 0.4, 06/14/2024 

o Administrator Guidance for Zebra Devices (6375), Version 0.4, 06/14/2024 

o Administrator Guidance for Zebra Devices (6490/5430), Version 0.4, 06/14/2024 

 

2.1 SECURITY AUDIT (FAU) 

 

2.1.1 AUDIT DATA GENERATION  (MDFPP33:FAU_GEN.1) 

 

2.1.1.1 MDFPP33:FAU_GEN.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.1.1.2 MDFPP33:FAU_GEN.1.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall check the TSS and ensure that it lists all of the auditable 

events and provides a format for audit records. Each audit record format type must be covered, along with a brief 

description of each field. The evaluator shall check to make sure that every audit event type mandated by the PP is 

described and that the description of the fields contains the information required in FAU_GEN.1.2. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 15 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Section 6.1 of the ST provides a table that references the audit events for each PP/module. These tables includes 

all required events.  Section 6.1 also provides a list of each audit event storage location and includes the contents 

of each audit record, and which audit log stores the event.  This information matches what is required in 

FAU_GEN.1.2.  The ST references section 8 of the Admin Guide for the details of the audited events. 

Component Guidance Assurance Activities: The evaluator shall also make a determination of the administrative 

actions that are relevant in the context of this PP including those listed in the Management section. The evaluator 

shall examine the administrative guide and make a determination of which administrative commands are related 

to the configuration (including enabling or disabling) of the mechanisms implemented in the TOE that are 

necessary to enforce the requirements specified in the PP. The evaluator shall document the methodology or 

approach taken while determining which actions in the administrative guide are security relevant with respect to 

this PP. The evaluator may perform this activity as part of the activities associated with ensuring the AGD_OPE 

guidance satisfies the requirements. 

Section 2.6 (Audit Logging) in the Admin Guide indicates that administrators can enable security logging for target 

devices and these logs can be retrieved via the MDM agent.  The security logs can be viewed and exported via the 

MDM.  Relevant logging information can also be captured via security logs and logcat which does not require any 

additional configuration to be enabled. 

Section 8 of the Admin Guide includes details about the audit records which the TOE generates including details 

encompassing the required content.  During testing, the evaluator mapped the entries in the tables in this section 

to the TOE generated events, showing that the section provides include examples/descriptions of all required audit 

events. For administrator events, the evaluator ensured an audit record was listed for all security relevant events. 

Component Testing Assurance Activities: The evaluator shall test the TOE's ability to correctly generate audit 

records by having the TOE generate audit records for the events listed in the provided table and administrative 

actions. This should include all instances of an event. The evaluator shall test that audit records are generated for 

the establishment and termination of a channel for each of the cryptographic protocols contained in the ST. For 

administrative actions, the evaluator shall test that each action determined by the evaluator above to be security 

relevant in the context of this PP is auditable. When verifying the test results, the evaluator shall ensure the audit 

records generated during testing match the format specified in the administrative guide, and that the fields 

specified in FAU_GEN.1.2 are contained in each audit record. 

Note that the testing here can be accomplished in conjunction with the testing of the security mechanisms 

directly. For example, testing performed to ensure that the administrative guidance provided is correct verifies 

that AGD_OPE.1 is satisfied and should address the invocation of the administrative actions that are needed to 

verify the audit records are generated as expected. 

The evaluator tested the TOE's ability to correctly generate audit records by having the TOE generate audit records 

for the events listed in the provided tables above including all administrative actions. The evaluator collected these 

audit records while running the security functional tests.   When verifying the test results, the evaluator verified 

that the audit records generated during testing matched the format specified in the administrative guide, and that 

the fields in each audit record have the proper entries.  For each type of audit record, the evaluators found that 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 16 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

the TOE correctly generated an audit log matching the vendor specified one.  The evaluator collected a sample of 

each type of audit record and included these samples in the Detailed Test Report for this evaluation. A spreadsheet 

of the audits can be found in the MDFPP33:FAU_GEN.1-test 1 section of the DTR. 

 

2.1.2 AUDIT DATA GENERATION (BLUETOOTH) - PER TD0707  

(BT10:FAU_GEN.1/BT) 

 

2.1.2.1 BT10:FAU_GEN.1.1/BT 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.1.2.2 BT10:FAU_GEN.1.2/BT 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.1.3 AUDIT DATA GENERATION (WIRELESS LAN)  (WLANC10:FAU_GEN.1/WLAN) 

 

2.1.3.1 WLANC10:FAU_GEN.1.1/WLAN 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 17 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

2.1.3.2 WLANC10:FAU_GEN.1.2/WLAN 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall check the TSS and ensure it provides a format for audit 

records. Each audit record format type must be covered, along with a brief description of each field. 

If 'invoke platform-provided functionality' is selected, the evaluator shall examine the TSS to verify it describes (for 

each supported platform) how this functionality is invoked (it should be noted that this may be through a 

mechanism that is not implemented by the WLAN Client; however, that mechanism will be identified in the TSS as 

part of this evaluation activity). 

See MDFPP33:FAU_GEN.1. Additionally, Section 6.1 of the ST states the WLAN client components are integrated 

into the operating system and write directly to the SecurityLog and Logcat (as needed). 

Component Guidance Assurance Activities: The evaluator shall check the operational guidance and ensure it lists 

all of the auditable events and provides a format for audit records. Each audit record format type must be covered, 

along with a brief description of each field. The evaluator shall check to make sure that every audit event type 

mandated by the PP-Module is described and that the description of the fields contains the information required in 

FAU_GEN.1.2/WLAN, and the additional information specified in Table 2 in the main document and Table 5 in the 

main document. 

The evaluator shall in particular ensure that the operational guidance is clear in relation to the contents for failed 

cryptographic events. In the Auditable Events tables, information detailing the cryptographic mode of operation 

and a name or identifier for the object being encrypted is required. The evaluator shall ensure that name or 

identifier is sufficient to allow an administrator reviewing the audit log to determine the context of the 

cryptographic operation (for example, performed during a key negotiation exchange, performed when encrypting 

data for transit) as well as the non-TOE endpoint of the connection for cryptographic failures relating to 

communications with other IT systems. 

The evaluator shall also make a determination of the administrative actions that are relevant in the context of this 

PP-Module. The TOE may contain functionality that is not evaluated in the context of this PP-Module because the 

functionality is not specified in an SFR. This functionality may have administrative aspects that are described in the 

operational guidance. Since such administrative actions will not be performed in an evaluated configuration of the 

TOE, the evaluator shall examine the operational guidance and make a determination of which administrative 

commands, including subcommands, scripts, and configuration files, are related to the configuration (including 

enabling or disabling) of the mechanisms implemented in the TOE that are necessary to enforce the requirements 

specified in the PP-Module, which thus form the set of 'all administrative actions'. The evaluator may perform this 

activity as part of the activities associated with ensuring the AGD_OPE guidance satisfies the requirements. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 18 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

See MDFPP33:FAU_GEN.1 

Component Testing Assurance Activities: The evaluator shall test the TOE's ability to correctly generate audit 

records by having the TOE generate audit records in accordance with the assurance activities associated with the 

functional requirements in this PP-Module. When verifying the test results, the evaluator shall ensure the audit 

records generated during testing match the format specified in the administrative guide, and that the fields in each 

audit record have the proper entries. 

Note that the testing here can be accomplished in conjunction with the testing of the security mechanisms 

directly. For example, testing performed to ensure that the administrative guidance provided is correct verifies 

that AGD_OPE.1 is satisfied and should address the invocation of the administrative actions that are needed to 

verify the audit records are generated as expected. 

See MDFPP33:FAU_GEN.1 

 

2.1.4 AUDIT REVIEW  (MDFPP33:FAU_SAR.1) 

 

2.1.4.1 MDFPP33:FAU_SAR.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.1.4.2 MDFPP33:FAU_SAR.1.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The evaluation activity for this requirement is performed in conjunction 

with test for function 32 of FMT_SMF.1. 

See test 32 of MDFPP33:FMT_SMF.1 for the audit review test. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 19 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

 

2.1.5 AUDIT STORAGE PROTECTION  (MDFPP33:FAU_STG.1) 

 

2.1.5.1 MDFPP33:FAU_STG.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.1.5.2 MDFPP33:FAU_STG.1.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall ensure that the TSS lists the location of all logs and the 

access controls of those files such that unauthorized modification and deletion are prevented. 

Section 6.1 of the ST states for security logs, the TOE stores all audit records in memory, making it only accessible 

to the logd daemon, and only device owner applications can call the MDM API to retrieve a copy of the logs. 

Additionally, only new logs can be added. There is no designated method allowing for the deletion or modification 

of logs already present in memory, but reading the security logs clears the buffer at the time of the read. 

The TOE stores logcat events in memory and only allows access by an administrator via an MDM Agent.  The TOE 

prevents deletion of these logs by any method other than USB debugging (and enabling USB Debugging takes the 

phone out of the evaluated configuration). 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: Test 1: The evaluator shall attempt to delete the audit trail in a manner 

that the access controls should prevent (as an unauthorized user) and shall verify that the attempt fails. 

Test 2: The evaluator shall attempt to modify the audit trail in a manner that the access controls should prevent (as 

an unauthorized application) and shall verify that the attempt fails. 

The TOE protects the security log in memory, and only allows access to the logd daemon, which only affords a 

device owner the MDM API to retrieve a copy of these logs.  Because of this, the evaluator had no method to 

delete or modify the logs present in memory.  The TOE also stores Logcat logs in memory buffers; however, it is 

possible to clear this log as part of debugging access.  In CC Mode, the debugging feature must be disabled and 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 20 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

therefore, unauthorized users have no access to the logs.  Only an authorized administrator can read the audit trail 

via the TOE’s MDM APIs.  

Test 1: The evaluator tested both modification and removal and found no way to attempt modification or removal 

of the admin protected audit logs while the device was configured with the CC requirement that USB debugging be 

disabled and disallowed through the MDM APIs.      

Test 2: The evaluator attempted to delete the audit trail from an unauthorized application and confirmed that 

there were no access controls of any kind to access or delete the logs. 

 

2.1.6 PREVENTION OF AUDIT DATA LOSS  (MDFPP33:FAU_STG.4) 

 

2.1.6.1 MDFPP33:FAU_STG.4.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall examine the TSS to ensure that it describes the size limits 

on the audit records, the detection of a full audit trail, and the actions taken by the TSF when the audit trail is full. 

The evaluator shall ensure that the actions results in the deletion or overwrite of the oldest stored record. 

Section 6.1 of the ST explains that the SecurityLog and logcat are stored in memory in a circular log buffer of 

10KB/64KB, respectively. Logcat storage is configurable, able to be set by an MDM API. There is no limit to the size 

that the logcat buffer can be configured to and it is limited to the size of the system’s memory. Once the log is full, 

it begins overwriting the oldest message in its respective buffer and continues overwriting the oldest message with 

each new auditable event. These logs persist until either they are overwritten or the device is restarted. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

2.2 CRYPTOGRAPHIC SUPPORT (FCS) 

 

2.2.1 CRYPTOGRAPHIC KEY GENERATION  (MDFPP33:FCS_CKM.1) 

 

2.2.1.1 MDFPP33:FCS_CKM.1.1 

TSS Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 21 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall ensure that the TSS identifies the key sizes supported by 

the TOE. If the ST specifies more than one scheme, the evaluator shall examine the TSS to verify that it identifies 

the usage for each scheme. 

Section 6.2 of the ST provides the following table which identifies the key sizes supported by the TOE as well as the 

usage for each scheme. 

Algorithm Key/Curve Sizes Usage 

RSA, FIPS 186-4 2048/3072 
API/Application & Sensitive Data Protection 
(FDP_DAR_EXT.2) 

ECDSA, FIPS 186-4 P-256/384/521 API/Application 

ECDHE keys (not domain parameters) P-256/384 TLS KeyEx (WPA2/WPA3 w/ EAP-TLS & HTTPS) 

 

Component Guidance Assurance Activities: The evaluator shall verify that the AGD guidance instructs the 

administrator how to configure the TOE to use the selected key generation schemes and key sizes for all uses 

defined in this PP. 

Section 3.1 (Entering into Common Criteria State) in the Admin Guide provides settings and instructions for 

configuring the TOE into Common Criteria Mode. Section 3.4 states that there is no additional configuration 

required to ensure key generation, key sizes, hash sizes, and all other cryptographic functions meet NIAP 

requirements. 

Section 10.1 (Cryptographic APIs) in the Admin Guide describes the APIs for both RSA and ECDSA Key Generation. 

Within these APIs are described the variables that should be used to utilize/select specific key sizes for each key 

generation scheme. 

Component Testing Assurance Activities: Evaluation Activity Note: The following tests require the developer to 

provide access to a test platform that provides the evaluator with tools that are typically not found on factory 

products. 

Key Generation for FIPS PUB 186-4 RSA Schemes 

The evaluator shall verify the implementation of RSA Key Generation by the TOE using the Key Generation test. 

This test verifies the ability of the TSF to correctly produce values for the key components including the public 

verification exponent e, the private prime factors p and q, the public modulus n and the calculation of the private 

signature exponent d. 

Key Pair generation specifies 5 ways (or methods) to generate the primes p and q. These include: 

1. Random Primes: 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 22 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

  o Provable primes 

  o Probable primes 

2. Primes with Conditions: 

  o Primes p1, p2, q1,q2, p and q shall all be provable primes 

  o Primes p1, p2, q1, and q2 shall be provable primes and p and q shall be probable primes 

  o Primes p1, p2, q1,q2, p and q shall all be probable primes 

To test the key generation method for the Random Provable primes method and for all the Primes with Conditions 

methods, the evaluator must seed the TSF key generation routine with sufficient data to deterministically generate 

the RSA key pair. This includes the random seeds, the public exponent of the RSA key, and the desired key length. 

For each key length supported, the evaluator shall have the TSF generate 25 key pairs. The evaluator shall verify 

the correctness of the TSF's implementation by comparing values generated by the TSF with those generated from 

a known good implementation. 

If possible, the Random Probable primes method should also be verified against a known good implementation as 

described above. Otherwise, the evaluator shall have the TSF generate 10 keys pairs for each supported key length 

nlen and verify: 

  - n = p*q 

  - p and q are probably prime according to Miller-Rabin tests 

  - GCD(p-1,e) = 1 

  - GCD(q-1,e) = 1 

  - 2^16 < e < 2^256 and e is an odd integer 

  - |p-q| > 2^(nlen/2 â€“ 100) 

  - p >= squareroot(2)*( 2^(nlen/2 -1) ) 

  - q >= squareroot(2)*( 2^(nlen/2 -1) ) 

  - 2^(nlen/2) < d < LCM(p-1,q-1) 

  - e*d = 1 mod LCM(p-1,q-1) 

Key Generation for FIPS 186-4 Elliptic Curve Cryptography (ECC) 

FIPS 186-4 ECC Key Generation Test 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 23 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

For each supported NIST curve, i.e. P-256, P-384 and P-521, the evaluator shall require the implementation under 

test (IUT) to generate 10 private/public key pairs. The private key shall be generated using an approved random bit 

generator (RBG). To determine correctness, the evaluator shall submit the generated key pairs to the public key 

verification (PKV) function of a known good implementation. 

FIPS 186-4 Public Key Verification (PKV) Test 

For each supported NIST curve, i.e. P-256, P-384 and P-521, the evaluator shall generate 10 private/public key pairs 

using the key generation function of a known good implementation and modify five of the public key values so that 

they are incorrect, leaving five values unchanged (i.e. correct). The evaluator shall obtain in response a set of 10 

PASS/FAIL values. 

Key Generation for Curve25519 

The evaluator shall require the implementation under test (IUT) to generate 10 private/public key pairs. The 

private key shall be generated as specified in RFC 7748 using an approved random bit generator (RBG) and shall be 

written in little-endian order (least significant byte first). To determine correctness, the evaluator shall submit the 

generated key pairs to the public key verification (PKV) function of a known good implementation. 

Note: Assuming the PKV function of the good implementation will (using little-endian order): 

a. Confirm the private and public keys are 32-byte values 

b. Confirm the three least significant bits of the first byte of the private key are zero 

c. Confirm the most significant bit of the last byte is zero 

d. Confirm the second most significant bit of the last byte is one 

e. Calculate the expected public key from the private key and confirm it matches the supplied public key 

The evaluator shall generate 10 private/public key pairs using the key generation function of a known good 

implementation and modify 5 of the public key values so that they are incorrect, leaving five values unchanged (i.e. 

correct). The evaluator shall obtain in response a set of 10 PASS/FAIL values. 

Key Generation for Finite-Field Cryptography (FFC) 

The evaluator shall verify the implementation of the Parameters Generation and the Key Generation for FFC by the 

TOE using the Parameter Generation and Key Generation test. This test verifies the ability of the TSF to correctly 

produce values for the field prime p, the cryptographic prime q (dividing p-1), the cryptographic group generator g, 

and the calculation of the private key x and public key y. 

The Parameter generation specifies 2 ways (or methods) to generate the cryptographic prime q and the field prime 

p: 

Cryptographic and Field Primes: 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 24 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

  - Primes q and p shall both be provable primes 

  - Primes q and field prime p shall both be probable primes 

and two ways to generate the cryptographic group generator g: 

Cryptographic Group Generator: 

  - Generator g constructed through a verifiable process 

  - Generator g constructed through an unverifiable process 

The Key generation specifies 2 ways to generate the private key x: 

Private Key: 

  - len(q) bit output of RBG where 1 <= x <= q-1 

  - len(q) + 64 bit output of RBG, followed by a mod q-1 operation where 1<= x<=q-1 

The security strength of the RBG must be at least that of the security offered by the FFC parameter set. 

To test the cryptographic and field prime generation method for the provable primes method or the group 

generator g for a verifiable process, the evaluator must seed the TSF parameter generation routine with sufficient 

data to deterministically generate the parameter set. 

For each key length supported, the evaluator shall have the TSF generate 25 parameter sets and key pairs. The 

evaluator shall verify the correctness of the TSF's implementation by comparing values generated by the TSF with 

those generated from a known good implementation. Verification must also confirm 

  - g != 0,1 

  - q divides p-1 

  - g^q mod p = 1 

  - g^x mod p = y 

for each FFC parameter set and key pair. 

The TOE has been CAVP tested.  Refer to the CAVP certificates identified in Section 1.2. 

 

2.2.2 CRYPTOGRAPHIC KEY GENERATION (SYMMETRIC KEYS FOR WPA2/WPA3 

CONNECTIONS)  (WLANC10:FCS_CKM.1/WPA) 

 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 25 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

2.2.2.1 WLANC10:FCS_CKM.1.1/WPA 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall verify that the TSS describes how the primitives defined 

and implemented by this PP-Module are used by the TOE in establishing and maintaining secure connectivity to 

the wireless clients. The TSS shall also provide a description of the developer's method(s) of assuring that their 

implementation conforms to the cryptographic standards; this includes not only testing done by the developing 

organization, but also any third-party testing that is performed. 

Section 6.2 of the ST states the TOE adheres to IEEE 802.11-2012 for key generation. The TOE’s wpa_supplicant 

provides PRF384 for WPA3/WPA2 derivation of 128-bit AES Temporal Key (using the HMAC implementation 

provided by BoringSSL) and employs its BoringSSL AES-256 DRBG when generating random values used in the EAP-

TLS and 802.11 4-way handshake. The TOE supports the AES-128 CCMP encryption mode. The TOE has successfully 

completed certification (including WPA3/WPA2 Enterprise) and received Wi-Fi CERTIFIED Interoperability 

Certificates from the Wi-Fi Alliance. The Wi-Fi Alliance maintains a website providing further information about the 

testing program: http://www.wi-fi.org/certification. 

Device Name Wi-Fi Alliance Certificate Numbers 

660 Mobile Handhelds WFA97981, WFA99859, WFA113336, WFA113833, WFA114039, 

WFA114040, WFA114043, WFA114044, WFA114045, WFA114046, 

WFA114047, WFA114232, WFA114233, WFA114901, WFA114903, 

WFA114906, WFA114907, WFA114908, WFA114910, WFA114911, 

WFA114914 

6490/5430 Mobile Handhelds WFA118214, WFA119111, WFA120000, WFA123252, WFA123888, 

WFA125523, WFA126056, WFA127940, WFA127941 

6375 Mobile Handhelds WFA112221, WFA113714, WFA119406, WFA120159 

 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The evaluator shall perform the following tests: 

Test 1: The evaluator shall configure the access point so the cryptoperiod of the session key is 1 hour. The 

evaluator shall successfully connect the TOE to the access point and maintain the connection for a length of time 

that is greater than the configured cryptoperiod. The evaluator shall use a packet capture tool to determine that 

after the configured cryptoperiod, a re-negotiation is initiated to establish a new session key. Finally, the evaluator 

http://www.wi-fi.org/certification


 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 26 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

shall determine that the renegotiation has been successful and the client continues communication with the 

access point. 

Test 2: The evaluator shall perform the following test using a packet sniffing tool to collect frames between the 

TOE and a wireless LAN access point: 

Step 1: The evaluator shall configure the access point to an unused channel and configure the WLAN sniffer to sniff 

only on that channel (i.e., lock the sniffer on the selected channel). The sniffer should also be configured to filter 

on the MAC address of the TOE and/or access point. 

Step 2: The evaluator shall configure the TOE to communicate with a WLAN access point using IEEE 802.11-2012 

and a 256-bit (64 hex values 0-f) pre-shared key. The pre-shared key is only used for testing. 

Step 3: The evaluator shall start the sniffing tool, initiate a connection between the TOE and the access point, and 

allow the TOE to authenticate, associate, and successfully complete the 4-way handshake with the client. 

Step 4: The evaluator shall set a timer for 1 minute, at the end of which the evaluator shall disconnect the TOE 

from the wireless network and stop the sniffer. 

Step 5: The evaluator shall identify the 4-way handshake frames (denoted EAPOL-key in Wireshark captures) and 

derive the PTK from the 4-way handshake frames and pre-shared key as specified in IEEE 802.11-2012. 

Step 6: The evaluator shall select the first data frame from the captured packets that was sent between the TOE 

and access point after the 4-way handshake successfully completed, and without the frame control value 0x4208 

(the first 2 bytes are 08 42). The evaluator shall use the PTK to decrypt the data portion of the packet as specified 

in IEEE 802.11-2012, and shall verify that the decrypted data contains ASCII-readable text. 

Step 7: The evaluator shall repeat Step 6 for the next 2 data frames between the TOE and access point and without 

frame control value 0x4208. 

Test 1 – The access point was configured to have a one-hour cryptoperiod.  The TOE(s) connected to the access 

point and after an hour, the TOE and access point renegotiated the keys.  The evaluator saw the renegotiation in a 

packet capture.  

Test 2 - The TOE was configured to connect to an access point and a wireless packet capture was started.  The TOE 

was connected and disconnected after more than a minute while a number of broadcast packet were observed 

using wireshark. The evaluator filtered the capture further to demonstrate the 4-way handshake and encrypted 

broadcast packets. The evaluator then decrypted the packet capture and demonstrated the PTK and GTK were 

derived. 

 

2.2.3 CRYPTOGRAPHIC KEY ESTABLISHMENT  (MDFPP33:FCS_CKM.2/LOCKED) 

 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 27 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

2.2.3.1 MDFPP33:FCS_CKM.2.1/LOCKED 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The test for SP800-56A and SP800-56B key establishment schemes is 

performed in association with FCS_CKM.2/UNLOCKED. 

Curve25519 Key Establishment Schemes 

The evaluator shall verify a TOE's implementation of the key agreement scheme using the following Function and 

Validity tests. These validation tests for each key agreement scheme verify that a TOE has implemented the 

components of the key agreement scheme according to the specification. These components include the 

calculation of the shared secret K and the hash of K. 

Function Test 

The Function test verifies the ability of the TOE to implement the key agreement schemes correctly. To conduct 

this test the evaluator shall generate or obtain test vectors from a known good implementation of the TOE 

supported schemes. For each supported key agreement role and hash function combination, the tester shall 

generate 10 sets of public keys. These keys are static, ephemeral or both depending on the scheme being tested. 

The evaluator shall obtain the shared secret value K, and the hash of K. 

The evaluator shall verify the correctness of the TSF's implementation of a given scheme by using a known good 

implementation to calculate the shared secret value K and compare the hash generated from this value. 

Validity Test 

The Validity test verifies the ability of the TOE to recognize another party's valid and invalid key agreement results. 

To conduct this test, the evaluator generates a set of 30 test vectors consisting of data sets including the 

evaluator's public keys and the TOE's public/private key pairs. 

The evaluator shall inject an error in some of the test vectors to test that the TOE recognizes invalid key agreement 

results caused by the following fields being incorrect: the shared secret value K or the hash of K. At least two of the 

test vectors shall remain unmodified and therefore should result in valid key agreement results (they should pass). 

The TOE shall use these modified test vectors to emulate the key agreement scheme using the corresponding 

parameters. The evaluator shall compare the TOE's results with the results using a known good implementation 

verifying that the TOE detects these errors. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 28 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The TOE has been CAVP tested.  Refer to the CAVP certificates identified in Section 1.2. 

 

2.2.4 CRYPTOGRAPHIC KEY ESTABLISHMENT  

(MDFPP33:FCS_CKM.2/UNLOCKED) 

 

2.2.4.1 MDFPP33:FCS_CKM.2.1/UNLOCKED 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall ensure that the supported key establishment schemes 

correspond to the key generation schemes identified in FCS_CKM.1.1. If the ST specifies more than one scheme, 

the evaluator shall examine the TSS to verify that it identifies the usage for each scheme. 

Section 6.2 of the ST states the TOE performs key establishment as part of EAP-TLS and TLS session establishment. 

The text refers to MDFPP33: FCS_CKM.1.for an identification of schemes.  The table is copied here for 

completeness. 

Algorithm Key/Curve Sizes Usage 

RSA, FIPS 186-4 2048/3072 
API/Application & Sensitive Data Protection 
(FDP_DAR_EXT.2) 

ECDSA, FIPS 186-4 P-256/384/521 API/Application 

ECDHE keys (not domain parameters) P-256/384 TLS KeyEx (WPA2/WPA3 w/ EAP-TLS & HTTPS) 

 

Component Guidance Assurance Activities: The evaluator shall verify that the AGD guidance instructs the 

administrator how to configure the TOE to use the selected key establishment schemes. 

Section 3.1 (Entering into Common Criteria State) in the Admin Guide provides settings and instructions for 

configuring the TOE into Common Criteria Mode. Section 3.4 states that there is no additional configuration 

required to ensure key generation, key sizes, hash sizes, and all other cryptographic functions meet NIAP 

requirements. 

Section 10.1 (Cryptographic APIs) in the Admin Guide describes the APIs for both RSA and ECDSA Key Generation. 

Within these APIs are described the variables that should be used to utilize/select specific key sizes for each key 

generation scheme. 

Component Testing Assurance Activities: Evaluation Activity Note: The following tests require the developer to 

provide access to a test platform that provides the evaluator with tools that are typically not found on factory 

products. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 29 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The evaluator shall verify the implementation of the key establishment schemes supported by the TOE using the 

applicable tests below. 

SP800-56A Revision 3 Key Establishment Schemes 

The evaluator shall verify a TOE's implementation of SP800-56A Revision 3 key establishment schemes using the 

following Function and Validity tests. These validation tests for each key agreement scheme verify that a TOE has 

implemented the components of the key agreement scheme according to the specifications in the 

Recommendation. These components include the calculation of the DLC primitives (the shared secret value Z) and 

the calculation of the derived keying material (DKM) via the Key Derivation Function (KDF). If key confirmation is 

supported, the evaluator shall also verify that the components of key confirmation have been implemented 

correctly, using the test procedures described below. This includes the parsing of the DKM, the generation of 

MACdata and the calculation of MacTag. 

Function Test 

The Function test verifies the ability of the TOE to implement the key agreement schemes correctly. To conduct 

this test the evaluator shall generate or obtain test vectors from a known good implementation of the TOE 

supported schemes. For each supported key agreement scheme-key agreement role combination, KDF type, and, if 

supported, key confirmation role- key confirmation type combination, the tester shall generate 10 sets of test 

vectors. The data set consists of one set of domain parameter values (FFC) or the NIST approved curve (ECC) per 10 

sets of public keys. These keys are static, ephemeral or both depending on the scheme being tested. 

The evaluator shall obtain the DKM, the corresponding TOE's public keys (static or ephemeral), the MAC tags, and 

any inputs used in the KDF, such as the Other Information field OI and TOE id fields. 

If the TOE does not use a KDF defined in SP 800-56A Revision 3, the evaluator shall obtain only the public keys and 

the hashed value of the shared secret. 

The evaluator shall verify the correctness of the TSF's implementation of a given scheme by using a known good 

implementation to calculate the shared secret value, derive the keying material DKM, and compare hashes or MAC 

tags generated from these values. 

If key confirmation is supported, the TSF shall perform the above for each implemented approved MAC algorithm. 

Validity Test 

The Validity test verifies the ability of the TOE to recognize another party's valid and invalid key agreement results 

with or without key confirmation. To conduct this test, the evaluator shall obtain a list of the supporting 

cryptographic functions included in the SP800-56A Revision 3 key agreement implementation to determine which 

errors the TOE should be able to recognize. The evaluator generates a set of 24 (FFC) or 30 (ECC) test vectors 

consisting of data sets including domain parameter values or NIST approved curves, the evaluator's public keys, the 

TOE's public/private key pairs, MacTag, and any inputs used in the KDF, such as the other info and TOE id fields. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 30 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The evaluator shall inject an error in some of the test vectors to test that the TOE recognizes invalid key agreement 

results caused by the following fields being incorrect: the shared secret value Z, the DKM, the other information 

field OI, the data to be MACed, or the generated MacTag. If the TOE contains the full or partial (only ECC) public 

key validation, the evaluator will also individually inject errors in both parties' static public keys, both parties' 

ephemeral public keys and the TOE's static private key to assure the TOE detects errors in the public key validation 

function or the partial key validation function (in ECC only). At least two of the test vectors shall remain 

unmodified and therefore should result in valid key agreement results (they should pass). 

The TOE shall use these modified test vectors to emulate the key agreement scheme using the corresponding 

parameters. The evaluator shall compare the TOE's results with the results using a known good implementation 

verifying that the TOE detects these errors. 

SP800-56B Key Establishment Schemes 

The evaluator shall verify that the TSS describes whether the TOE acts as a sender, a recipient, or both for RSA-

based key establishment schemes. 

If the TOE acts as a sender, the following evaluation activity shall be performed to ensure the proper operation of 

every TOE supported combination of RSA-based key establishment scheme: To conduct this test the evaluator shall 

generate or obtain test vectors from a known good implementation of the TOE supported schemes. For each 

combination of supported key establishment scheme and its options (with or without key confirmation if 

supported, for each supported key confirmation MAC function if key confirmation is supported, and for each 

supported mask generation function if KTS-OAEP is supported), the tester shall generate 10 sets of test vectors. 

Each test vector shall include the RSA public key, the plaintext keying material, any additional input parameters if 

applicable, the MacKey and MacTag if key confirmation is incorporated, and the outputted ciphertext. For each 

test vector, the evaluator shall perform a key establishment encryption operation on the TOE with the same inputs 

(in cases where key confirmation is incorporated, the test shall use the MacKey from the test vector instead of the 

randomly generated MacKey used in normal operation) and ensure that the outputted ciphertext is equivalent to 

the ciphertext in the test vector. 

If the TOE acts as a receiver, the following evaluation activities shall be performed to ensure the proper operation 

of every TOE supported combination of RSA-based key establishment scheme: To conduct this test the evaluator 

shall generate or obtain test vectors FCS_CKM.2.1/LOCKED from a known good implementation of the TOE 

supported schemes. For each combination of supported key establishment scheme and its options (with our 

without key confirmation if supported, for each supported key confirmation MAC function if key confirmation is 

supported, and for each supported mask generation function if KTS-OAEP is supported), the tester shall generate 

10 sets of test vectors. Each test vector shall include the RSA private key, the plaintext keying material (KeyData), 

any additional input parameters if applicable, the MacTag in cases where key confirmation is incorporated, and the 

outputted ciphertext. For each test vector, the evaluator shall perform the key establishment decryption operation 

on the TOE and ensure that the outputted plaintext keying material (KeyData) is equivalent to the plaintext keying 

material in the test vector. In cases where key confirmation is incorporated, the evaluator shall perform the key 

confirmation steps and ensure that the outputted MacTag is equivalent to the MacTag in the test vector. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 31 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The evaluator shall ensure that the TSS describes how the TOE handles decryption errors. In accordance with NIST 

Special Publication 800-56B, the TOE must not reveal the particular error that occurred, either through the 

contents of any outputted or logged error message or through timing variations. If KTS-OAEP is supported, the 

evaluator shall create separate contrived ciphertext values that trigger each of the three decryption error checks 

described in NIST Special Publication 800-56B section 7.2.2.3, ensure that each decryption attempt results in an 

error, and ensure that any outputted or logged error message is identical for each. If KTS-KEMKWS is supported, 

the evaluator shall create separate contrived ciphertext values that trigger each of the three decryption error 

checks described in NIST Special Publication 800-56B section 7.2.3.3, ensure that each decryption attempt results 

in an error, and ensure that any outputted or logged error message is identical for each. 

RSAES-PKCS1-v1_5 Key Establishment Schemes 

The evaluator shall verify the correctness of the TSF's implementation of RSAES-PKCS1-v1_5 by using a known 

good implementation for each protocol selected in FTP_ITC_EXT.1 that uses RSAES-PKCS1-v1_5. 

FFC Schemes using 'safe-prime' groups 

The evaluator shall verify the correctness of the TSF's implementation of 'safe-prime' groups by using a known 

good implementation for each protocol selected in FTP_ITC_EXT.1 that uses 'safe-prime' groups. This test must be 

performed for each 'safe-prime' group that each protocol uses. 

The TOE has been CAVP tested.  Refer to the CAVP certificates identified in Section 1.2. 

The TOE's RSA key exchange mechanism is used in the TLS handshake process and during both product 

development and evaluation testing, the TOE's implementation undergoes testing to ensure TLS compatibility.  Any 

defect in the RSA key exchange mechanism would result in an inability to negotiate TLS_RSA_* ciphersuites with a 

separate, known good implementation.  Gossamer's TLSC testing results demonstrate the TOE conforms to the 

specifications. 

2.2.5 CRYPTOGRAPHIC KEY DISTRIBUTION (GROUP TEMPORAL KEY FOR WLAN)  

(WLANC10:FCS_CKM.2/WLAN) 

 

2.2.5.1 WLANC10:FCS_CKM.2.1/WLAN 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall check the TSS to ensure that it describes how the GTK is 

unwrapped prior to being installed for use on the TOE using the AES implementation specified in this PP-Module. 

Section 6.2 of the ST states the TOE adheres to RFC 3394 and 802.11-2012 standards and unwraps the GTK (sent 

encrypted with the WPA3/WPA2 KEK using AES Key Wrap in an EAPOL-Key frame). The TOE, upon receiving an 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 32 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

EAPOL frame, will subject the frame to a number of checks (frame length, EAPOL version, frame payload size, 

EAPOL-Key type, key data length, EAPOL-Key CCMP descriptor version, and replay counter) to ensure a proper 

EAPOL message and then decrypt the GTK using the KEK, thus ensuring that it does not expose the Group 

Temporal Key (GTK). 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The evaluator shall perform the following test using a packet sniffing 

tool to collect frames between the TOE and a wireless access point (which may be performed in conjunction with 

the assurance activity for FCS_CKM.1.1/WLAN). 

Step 1: The evaluator shall configure the access point to an unused channel and configure the WLAN sniffer to sniff 

only on that channel (i.e., lock the sniffer on the selected channel). The sniffer should also be configured to filter 

on the MAC address of the TOE and/or access point. 

Step 2: The evaluator shall configure the TOE to communicate with the access point using IEEE 802.11-2012 and a 

256-bit (64 hex values 0-f) pre-shared key, setting up the connections as described in the operational guidance. 

The pre-shared key is only used for testing. 

Step 3: The evaluator shall start the sniffing tool, initiate a connection between the TOE and access point, and 

allow the TOE to authenticate, associate, and successfully complete the 4-way handshake with the TOE. 

Step 4: The evaluator shall set a timer for 1 minute, at the end of which the evaluator shall disconnect the TOE 

from the access point and stop the sniffer. 

Step 5: The evaluator shall identify the 4-way handshake frames (denoted EAPOL-key in Wireshark captures) and 

derive the PTK and GTK from the 4-way handshake frames and pre-shared key as specified in IEEE 802.11-2012. 

Step 6: The evaluator shall select the first data frame from the captured packets that was sent between the TOE 

and access point after the 4-way handshake successfully completed, and with the frame control value 0x4208 (the 

first 2 bytes are 08 42). The evaluator shall use the GTK to decrypt the data portion of the selected packet as 

specified in IEEE 802.11-2012, and shall verify that the decrypted data contains ASCIIreadable text. 

Step 7: The evaluator shall repeat Step 6 for the next 2 data frames with frame control value 0x4208. 

See the test activities for WLANC10:FCS_CKM.1/WPA where the same test was performed. 

 

2.2.6 CRYPTOGRAPHIC KEY SUPPORT  (MDFPP33:FCS_CKM_EXT.1) 

 

2.2.6.1 MDFPP33:FCS_CKM_EXT.1.1 

TSS Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 33 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.2.6.2 MDFPP33:FCS_CKM_EXT.1.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.2.6.3 MDFPP33:FCS_CKM_EXT.1.3 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall review the TSS to determine that a REK is supported by 

the TOE, that the TSS includes a description of the protection provided by the TOE for a REK, and that the TSS 

includes a description of the method of generation of a REK. 

The evaluator shall verify that the description of the protection of a REK describes how any reading, import, and 

export of that REK is prevented. For example, if the hardware protecting the REK is removable, the description 

should include how other devices are prevented from reading the REK. The evaluator shall verify that the TSS 

describes how encryption/decryption/derivation actions are isolated so as to prevent applications and systemlevel 

processes from reading the REK while allowing encryption/decryption/derivation by the key. 

The evaluator shall verify that the description includes how the OS is prevented from accessing the memory 

containing REK key material, which software is allowed access to the REK, how any other software in the execution 

environment is prevented from reading that key material, and what other mechanisms prevent the REK key 

material from being written to shared memory locations between the OS and the separate execution environment. 

If key derivation is performed using a REK, the evaluator shall ensure that the TSS description includes a 

description of the key derivation function and shall verify the key derivation uses an approved derivation mode 

and key expansion algorithm according to FCS_CKM_EXT.3.2. 

The evaluator shall verify that the generation of a REK meets the FCS_RBG_EXT.1.1 and FCS_RBG_EXT.1.2 

requirements: 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 34 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

- If REKs is/are generated on-device, the TSS shall include a description of the generation mechanism including 

what triggers a generation, how the functionality described by FCS_RBG_EXT.1 is invoked, and whether a separate 

instance of the RBG is used for REKs. 

- If REKs is/are generated off-device, the TSS shall include evidence that the RBG meets FCS_RBG_EXT.1. This will 

likely necessitate a second set of RBG documentation equivalent to the documentation provided for the RBG 

Evaluation Activities. In addition, the TSS shall describe the manufacturing process that prevents the device 

manufacturer from accessing any REKs. 

Section 6.2 of the ST states the TOE includes a Root Encryption Key (REK) stored in a 256-bit fuse bank within the 

application processor. The TOE generates the REK/fuse value during manufacturing using its hardware DRBG. The 

application processor protects the REK by preventing any direct observation of the value and prohibiting any ability 

to modify or update the value. The application processor loads the fuse value into an internal hardware crypto 

register and the Trusted Execution Environment (TEE) provides trusted applications the ability to derive KEKs from 

the REK (using an SP 800-108 KDF to combine the REK with a salt). Additionally, the when the REK is loaded, the 

fuses for the REK become locked, preventing any further changing or loading of the REK value. The TEE does not 

allow trusted applications to use the REK for encryption or decryption, only the ability to derive a KEK from the 

REK. The TOE includes a TEE application that calls into the TEE in order to derive a KEK from the 256-bit REK/fuse 

value and then only permits use of the derived KEK for encryption and decryption as part of the TOE key hierarchy. 

More information regarding Trusted Execution Environments may be found at the GlobalPlatform website. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.2.7 CRYPTOGRAPHIC KEY RANDOM GENERATION  (MDFPP33:FCS_CKM_EXT.2) 

 

2.2.7.1 MDFPP33:FCS_CKM_EXT.2.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall ensure that the documentation of the product's 

encryption key management is detailed enough that, after reading, the product's key management hierarchy is 

clear and that it meets the requirements to ensure the keys are adequately protected. The evaluator shall ensure 

that the documentation includes both an essay and one or more diagrams. Note that this may also be documented 

as separate proprietary evidence rather than being included in the TSS. 

https://globalplatform.org/


 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 35 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The evaluator shall also examine the key hierarchy section of the TSS to ensure that the formation of all DEKs is 

described and that the key sizes match that described by the ST author. The evaluator shall examine the key 

hierarchy section of the TSS to ensure that each DEK is generated or combined from keys of equal or greater 

security strength using one of the selected methods. 

- If the symmetric DEK is generated by an RBG, the evaluator shall review the TSS to determine that it describes 

how the functionality described by FCS_RBG_EXT.1 is invoked. The evaluator uses the description of the RBG 

functionality in FCS_RBG_EXT.1 or documentation available for the operational environment to determine that the 

key size being requested is greater than or equal to the key size and mode to be used for the 

encryption/decryption of the data. 

- If the DEK is formed from a combination, the evaluator shall verify that the TSS describes the method of 

combination and that this method is either an XOR or a KDF to justify that the effective entropy of each factor is 

preserved. The evaluator shall also verify that each combined value was originally generated from an Approved 

DRBG described in FCS_RBG_EXT.1. 

- If concatenating the keys and using a KDF (as described in (SP 800-56C) is selected, the evaluator shall ensure the 

TSS includes a description of the randomness extraction step. 

The description must include how an approved untruncated MAC function is being used for the randomness 

extraction step and the evaluator must verify the TSS describes that the output length (in bits) of the MAC function 

is at least as large as the targeted security strength (in bits) of the parameter set employed by the key 

establishment scheme (see Tables 1-3 of SP 800-56C). 

The description must include how the MAC function being used for the randomness extraction step is related to 

the PRF used in the key expansion and verify the TSS description includes the correct MAC function: 

- If an HMAC-hash is used in the randomness extraction step, then the same HMAC-hash (with the same hash 

function hash) is used as the PRF in the key expansion step. 

- If an AES-CMAC (with key length 128, 192, or 256 bits) is used in the randomness extraction step, then AES-CMAC 

with a 128-bit key is used as the PRF in the key expansion step. 

- The description must include the lengths of the salt values being used in the randomness extraction step and the 

evaluator shall verify the TSS description includes correct salt lengths: 

- If an HMAC-hash is being used as the MAC, the salt length can be any value up to the maximum bit length 

permitted for input to the hash function hash. 

- If an AES-CMAC is being used as the MAC, the salt length shall be the same length as the AES key (i.e. 128, 192, or 

256 bits). 

(conditional) If a KDF is used, the evaluator shall ensure that the TSS includes a description of the key derivation 

function and shall verify the key derivation uses an approved derivation mode and key expansion algorithm 

according to SP 800-108 or SP 800-56C. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 36 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Section 6.2 of the ST states the TOE utilizes its approved RBGs to generate DEKs. When generating AES keys for 

itself (for example, the TOE’s sensitive data encryption keys or for the Secure Key Storage), the TOE utilizes the 

RAND_bytes() API call from its BoringSSL AES-256 CTR_DRBG to generate a 256-bit AES key. The TOE also utilizes 

that same DRBG when servicing API requests from mobile applications wishing to generate AES keys (either 128 or 

256-bit). 

In all cases, the TOE generates DEKs using a compliant RBG seeded with sufficient entropy so as to ensure that the 

generated key cannot be recovered with less work than a full exhaustive search of the key space. The proprietary 

key hierarchy diagrams in the KMD demonstrate all the required cryptographic operations. The evaluator 

examined the proprietary key hierarchy diagrams and verified that each DEK is generated or combined from keys 

of equal or greater security strength using one of the selected methods from the SFR. The SRF selected only DRBG 

so TSS is complete 

Component Guidance Assurance Activities: The evaluator uses the description of the RBG functionality in 

FCS_RBG_EXT.1 or documentation available for the operational environment to determine that the key size being 

generated or combined is identical to the key size and mode to be used for the encryption/decryption of the data. 

Section 6.2 of the TSS explains that the TOE supports Data Encryption Key (DEK) generation using its approved 

RBGs for use in the TOE’S sensitive data encryption keys or for the Secure Key Storage. The TOE RBGs are capable 

of generating AES 256-bit DEKs in response to applications and services on the device. The 256-bit length matches 

the FCS_RBG_EXT.1 requirement. 

Component Testing Assurance Activities: If a KDF is used, the evaluator shall perform one or more of the following 

tests to verify the correctness of the key derivation function, depending on the modes that are supported. Table 4 

maps the data fields to the notations used in SP 800-108 and SP 800-56C. 

 

Table 4: Notations used in SP 800-108 and SP 800-56C 

 

              Data Fields                        Notations 

--------------------------------------------------------------------------------------------------- 

                                                       SP 800-108                   SP 800-56C 

--------------------------------------------------------------------------------------------------- 

      Pseudorandom                         PRF                                PRF 

      function                          

--------------------------------------------------------------------------------------------------- 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 37 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

      Counter length                           r                                     r 

--------------------------------------------------------------------------------------------------- 

      Length of                                   h                                    h 

      output of PRF             

--------------------------------------------------------------------------------------------------- 

      Length of derived                      L                                    L 

      keying material                                                                  

--------------------------------------------------------------------------------------------------- 

      Length of input values               I length                            I length 

--------------------------------------------------------------------------------------------------- 

      Pseudorandom                          K1                                   Z 

      input values I                             (key derivation key)         (shared secret) 

--------------------------------------------------------------------------------------------------- 

      Pseudorandom                          n/a                                 s 

      salt values 

---------------------------------------------------------------------------------------------------- 

      Randomness                              n/a                                MAC         

      extraction MAC 

---------------------------------------------------------------------------------------------------- 

 

Counter Mode Tests: 

The evaluator shall determine the following characteristics of the key derivation function: 

- One or more pseudorandom functions that are supported by the implementation (PRF). 

- One or more of the values 8, 16, 24, 32 that equal the length of the binary representation of the counter (r). 

- The length (in bits) of the output of the PRF (h). 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 38 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

- Minimum and maximum values for the length (in bits) of the derived keying material (L). These values can be 

equal if only one value of L is supported. These must be evenly divisible by h. 

- Up to two values of L that are NOT evenly divisible by h. 

- Location of the counter relative to fixed input data: before, after, or in the middle. 

   -- Counter before fixed input data: fixed input data string length (in bytes), fixed input data string value. 

   -- Counter after fixed input data: fixed input data string length (in bytes), fixed input data string value. 

   -- Counter in the middle of fixed input data: length of data before counter (in bytes), length of data after counter 

(in bytes), value of string input before counter, value of string input after counter. 

- The length (I_length) of the input values I. 

 

For each supported combination of I_length, MAC, salt, PRF, counter location, value of r, and value of L, the 

evaluator shall generate 10 test vectors that include pseudorandom input values I, and pseudorandom salt values. 

If there is only one value of L that is evenly divisible by h, the evaluator shall generate 20 test vectors for it. For 

each test vector, the evaluator shall supply this data to the TOE in order to produce the keying material output. 

 

The results from each test may either be obtained by the evaluator directly or by supplying the inputs to the 

implementer and receiving the results in response. To determine correctness, the evaluator shall compare the 

resulting values to those obtained by submitting the same inputs to a known good implementation. 

 

Feedback Mode Tests: 

The evaluator shall determine the following characteristics of the key derivation function: 

- One or more pseudorandom functions that are supported by the implementation (PRF). 

- The length (in bits) of the output of the PRF (h). 

- Minimum and maximum values for the length (in bits) of the derived keying material (L). These values can be 

equal if only one value of L is supported. These must be evenly divisible by h. 

- Up to two values of L that are NOT evenly divisible by h. 

- Whether or not zero-length IVs are supported. 

- Whether or not a counter is used, and if so: 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 39 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

   -- One or more of the values 8, 16, 24, 32 that equal the length of the binary representation of the counter (r). 

   -- Location of the counter relative to fixed input data: before, after, or in the middle. 

      o Counter before fixed input data: fixed input data string length (in bytes), fixed input data string value. 

      o Counter after fixed input data: fixed input data string length (in bytes), fixed input data string value. 

      o Counter in the middle of fixed input data: length of data before counter (in bytes), length of data after 

counter (in bytes), value of string input before counter, value of string input after counter. 

- The length (I_length) of the input values I. 

 

For each supported combination of I_length, MAC, salt, PRF, counter location (if a counter is used), value of r (if a 

counter is used), and value of L, the evaluator shall generate 10 test vectors that include pseudorandom input 

values I and pseudorandom salt values. If the KDF supports zero-length IVs, five of these test vectors will be 

accompanied by pseudorandom IVs and the other five will use zero-length IVs. If zero-length IVs are not supported, 

each test vector will be accompanied by an pseudorandom IV. If there is only one value of L that is evenly divisible 

by h, the evaluator shall generate 20 test vectors for it. 

 

For each test vector, the evaluator shall supply this data to the TOE in order to produce the keying material output. 

The results from each test may either be obtained by the evaluator directly or by supplying the inputs to the 

implementer and receiving the results in response. To determine correctness, the evaluator shall compare the 

resulting values to those obtained by submitting the same inputs to a known good implementation. 

 

Double Pipeline Iteration Mode Tests: 

The evaluator shall determine the following characteristics of the key derivation function: 

- One or more pseudorandom functions that are supported by the implementation (PRF). 

- The length (in bits) of the output of the PRF (h). 

- Minimum and maximum values for the length (in bits) of the derived keying material (L). These values can be 

equal if only one value of L is supported. These must be evenly divisible by h. 

- Up to two values of L that are NOT evenly divisible by h. 

- Whether or not a counter is used, and if so: 

   -- One or more of the values 8, 16, 24, 32 that equal the length of the binary representation of the counter (r). 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 40 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

   -- Location of the counter relative to fixed input data: before, after, or in the middle. 

      o Counter before fixed input data: fixed input data string length (in bytes), fixed input data string value. 

      o Counter after fixed input data: fixed input data string length (in bytes), fixed input data string value. 

      o Counter in the middle of fixed input data: length of data before counter (in bytes), length of data after 

counter (in bytes), value of string input before counter, value of string input after counter. 

- The length (I_length) of the input values I. 

 

For each supported combination of I_length, MAC, salt, PRF, counter location (if a counter is used), value of r (if a 

counter is used), and value of L, the evaluator shall generate 10 test vectors that include pseudorandom input 

values I, and pseudorandom salt values. If there is only one value of L that is evenly divisible by h, the evaluator 

shall generate 20 test vectors for it. 

 

For each test vector, the evaluator shall supply this data to the TOE in order to produce the keying material output. 

The results from each test may either be obtained by the evaluator directly or by supplying the inputs to the 

implementer and receiving the results in response. To determine correctness, the evaluator shall compare the 

resulting values to those obtained by submitting the same inputs to a known good implementation. 

The TOE has been CAVP tested.  Refer to the CAVP certificates identified in Section 1.2. 

 

2.2.8 CRYPTOGRAPHIC KEY GENERATION  (MDFPP33:FCS_CKM_EXT.3) 

 

2.2.8.1 MDFPP33:FCS_CKM_EXT.3.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.2.8.2 MDFPP33:FCS_CKM_EXT.3.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 41 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall examine the key hierarchy section of the TSS to ensure 

that the formation of all KEKs are described and that the key sizes match that described by the ST author. The 

evaluator shall examine the key hierarchy section of the TSS to ensure that each key (DEKs, software-based key 

storage, and KEKs) is encrypted by keys of equal or greater security strength using one of the selected methods. 

The evaluator shall review the TSS to verify that it contains a description of the conditioning used to derive KEKs. 

This description must include the size and storage location of salts. This activity may be performed in combination 

with that for FCS_COP.1/CONDITION. 

(conditional) If the symmetric KEK is generated by an RBG, the evaluator shall review the TSS to determine that it 

describes how the functionality described by FCS_RBG_EXT.1 is invoked. The evaluator uses the description of the 

RBG functionality in FCS_RBG_EXT.1 or documentation available for the operational environment to determine 

that the key size being requested is greater than or equal to the key size and mode to be used for the 

encryption/decryption of the data. 

(conditional) If the KEK is generated according to an asymmetric key scheme, the evaluator shall review the TSS to 

determine that it describes how the functionality described by FCS_CKM.1 is invoked. The evaluator uses the 

description of the key generation functionality in FCS_CKM.1 or documentation available for the operational 

environment to determine that the key strength being requested is greater than or equal to 112 bits. 

(conditional) If the KEK is formed from a combination, the evaluator shall verify that the TSS describes the method 

of combination and that this method is either an XOR, a KDF, or encryption. 

(conditional) If a KDF is used, the evaluator shall ensure that the TSS includes a description of the key derivation 

function and shall verify the key derivation uses an approved derivation mode and key expansion algorithm 

according to SP 800-108. 

(conditional) If 'concatenating the keys and using a KDF (as described in (SP 800-56C)' is selected, the evaluator 

shall ensure the TSS includes a description of the randomness extraction step. The description must include 

- How an approved untruncated MAC function is being used for the randomness extraction step and the evaluator 

must verify the TSS describes that the output length (in bits) of the MAC function is at least as large as the targeted 

security strength (in bits) of the parameter set employed by the key establishment scheme (see Tables 1-3 of SP 

800-56C).  

- How the MAC function being used for the randomness extraction step is related to the PRF used in the key 

expansion and verify the TSS description includes the correct MAC function: 

-- If an HMAC-hash is used in the randomness extraction step, then the same HMAC-hash (with the same hash 

function hash) is used as the PRF in the key expansion step. 

-- If an AES-CMAC (with key length 128, 192, or 256 bits) is used in the randomness extraction step, then AES-

CMAC with a 128-bit key is used as the PRF in the key expansion step. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 42 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

- The lengths of the salt values being used in the randomness extraction step and the evaluator shall verify the TSS 

description includes correct salt lengths: 

-- If an HMAC-hash is being used as the MAC, the salt length can be any value up to the maximum bit length 

permitted for input to the hash function hash. 

-- If an AES-CMAC is being used as the MAC, the salt length shall be the same length as the AES key (i.e. 128, 192, 

or 256 bits). 

The evaluator shall also ensure that the documentation of the product's encryption key management is detailed 

enough that, after reading, the product's key management hierarchy is clear and that it meets the requirements to 

ensure the keys are adequately protected. The evaluator shall ensure that the documentation includes both an 

essay and one or more diagrams. Note that this may also be documented as separate proprietary evidence rather 

than being included in the TSS. 

Section 6.2 of the ST states the TOE takes the user-entered password and conditions/stretches this value before 

combining the factor with other KEK. 

The TOE generates all non-derived KEKs using the RAND_bytes() API call from its BoringSSL AES-256 CTR_DRBG to 

ensure a full 128/256-bits of strength for asymmetric/symmetric keys, respectively. And the TOE combines KEKs by 

encrypting one KEK with the other so as to preserve entropy. 

The KMD provides the key hierarchy diagrams and a more detailed discussion of how keys are derived. All key sizes 

match SFR selections and all key strengths are maintained. 

Section 1.2 contains a mapping to CAVP certificates and includes one for KDF for FBE. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: If a KDF is used, the evaluator shall perform one or more of the following 

tests to verify the correctness of the key derivation function, depending on the mode(s) that are supported. Table 

5 maps the data fields to the notations used in SP 800-108 and SP 800-56C. 

 

Table 5: Notations used in SP 800-108 and SP 800-56C 

 

              Data Fields                        Notations 

--------------------------------------------------------------------------------------------------- 

                                                       SP 800-108                   SP 800-56C 

--------------------------------------------------------------------------------------------------- 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 43 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

      Pseudorandom                         PRF                                PRF 

      function                          

--------------------------------------------------------------------------------------------------- 

      Counter length                           r                                     r 

--------------------------------------------------------------------------------------------------- 

      Length of                                   h                                    h 

      output of PRF             

--------------------------------------------------------------------------------------------------- 

      Length of derived                      L                                    L 

      keying material                                                                  

--------------------------------------------------------------------------------------------------- 

      Length of input values               I length                            I length 

--------------------------------------------------------------------------------------------------- 

      Pseudorandom                          K1                                   Z 

      input values I                             (key derivation key)         (shared secret) 

--------------------------------------------------------------------------------------------------- 

      Pseudorandom                          n/a                                 s 

      salt values 

---------------------------------------------------------------------------------------------------- 

      Randomness                              n/a                                MAC         

      extraction MAC 

---------------------------------------------------------------------------------------------------- 

 

Counter Mode Tests: 

The evaluator shall determine the following characteristics of the key derivation function: 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 44 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

- One or more pseudorandom functions that are supported by the implementation (PRF). 

- One or more of the values 8, 16, 24, 32 that equal the length of the binary representation of the counter (r). 

- The length (in bits) of the output of the PRF (h). 

- Minimum and maximum values for the length (in bits) of the derived keying material (L). These values can be 

equal if only one value of L is supported. These must be evenly divisible by h. 

- Up to two values of L that are NOT evenly divisible by h. 

- Location of the counter relative to fixed input data: before, after, or in the middle. 

-- Counter before fixed input data: fixed input data string length (in bytes), fixed input data string value. 

-- Counter after fixed input data: fixed input data string length (in bytes), fixed input data string value. 

-- Counter in the middle of fixed input data: length of data before counter (in bytes), length of data after counter 

(in bytes), value of string input before counter, value of string input after counter. 

- The length (I_length) of the input values I. 

For each supported combination of I_length, MAC, salt, PRF, counter location, value of r, and value of L, the 

evaluator shall generate 10 test vectors that include pseudorandom input values I, and pseudorandom salt values. 

If there is only one value of L that is evenly divisible by h, the evaluator shall generate 20 test vectors for it. For 

each test vector, the evaluator shall supply this data to the TOE in order to produce the keying material output. 

The results from each test may either be obtained by the evaluator directly or by supplying the inputs to the 

implementer and receiving the results in response. To determine correctness, the evaluator shall compare the 

resulting values to those obtained by submitting the same inputs to a known good implementation. 

Feedback Mode Tests: 

The evaluator shall determine the following characteristics of the key derivation function: 

- One or more pseudorandom functions that are supported by the implementation (PRF). 

- The length (in bits) of the output of the PRF (h). 

- Minimum and maximum values for the length (in bits) of the derived keying material (L). These values can be 

equal if only one value of L is supported. These must be evenly divisible by h. 

- Up to two values of L that are NOT evenly divisible by h. 

- Whether or not zero-length IVs are supported. 

- Whether or not a counter is used, and if so: 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 45 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

-- One or more of the values 8, 16, 24, 32 that equal the length of the binary representation of the counter (r). 

-- Location of the counter relative to fixed input data: before, after, or in the middle. 

      o Counter before fixed input data: fixed input data string length (in bytes), fixed input data string value. 

      o Counter after fixed input data: fixed input data string length (in bytes), fixed input data string value. 

      o Counter in the middle of fixed input data: length of data before counter (in bytes), length of data after 

counter (in bytes), value of string input before counter, value of string input after counter. 

- The length (I_length) of the input values I. 

For each supported combination of I_length, MAC, salt, PRF, counter location (if a counter is used), value of r (if a 

counter is used), and value of L, the evaluator shall generate 10 test vectors that include pseudorandom input 

values I and pseudorandom salt values. If the KDF supports zero-length IVs, five of these test vectors will be 

accompanied by pseudorandom IVs and the other five will use zero-length IVs. If zero-length IVs are not supported, 

each test vector will be accompanied by an pseudorandom IV. If there is only one value of L that is evenly divisible 

by h, the evaluator shall generate 20 test vectors for it. 

For each test vector, the evaluator shall supply this data to the TOE in order to produce the keying material output. 

The results from each test may either be obtained by the evaluator directly or by supplying the inputs to the 

implementer and receiving the results in response. To determine correctness, the evaluator shall compare the 

resulting values to those obtained by submitting the same inputs to a known good implementation. 

Double Pipeline Iteration Mode Tests: 

The evaluator shall determine the following characteristics of the key derivation function: 

- One or more pseudorandom functions that are supported by the implementation (PRF). 

- The length (in bits) of the output of the PRF (h). 

- Minimum and maximum values for the length (in bits) of the derived keying material (L). These values can be 

equal if only one value of L is supported. These must be evenly divisible by h. 

- Up to two values of L that are NOT evenly divisible by h. 

- Whether or not a counter is used, and if so: 

-- One or more of the values 8, 16, 24, 32 that equal the length of the binary representation of the counter (r). 

-- Location of the counter relative to fixed input data: before, after, or in the middle. 

      o Counter before fixed input data: fixed input data string length (in bytes), fixed input data string value. 

      o Counter after fixed input data: fixed input data string length (in bytes), fixed input data string value. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 46 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

      o Counter in the middle of fixed input data: length of data before counter (in bytes), length of data after 

counter (in bytes), value of string input before counter, value of string input after counter. 

- The length (I_length) of the input values I. 

For each supported combination of I_length, MAC, salt, PRF, counter location (if a counter is used), value of r (if a 

counter is used), and value of L, the evaluator shall generate 10 test vectors that include pseudorandom input 

values I, and pseudorandom salt values. If there is only one value of L that is evenly divisible by h, the evaluator 

shall generate 20 test vectors for it. 

For each test vector, the evaluator shall supply this data to the TOE in order to produce the keying material output. 

The results from each test may either be obtained by the evaluator directly or by supplying the inputs to the 

implementer and receiving the results in response. To determine correctness, the evaluator shall compare the 

resulting values to those obtained by submitting the same inputs to a known good implementation. 

The TOE has been CAVP tested.  Refer to the CAVP certificates identified in Section 1.2. 

 

2.2.9 KEY DESTRUCTION  (MDFPP33:FCS_CKM_EXT.4) 

 

2.2.9.1 MDFPP33:FCS_CKM_EXT.4.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.2.9.2 MDFPP33:FCS_CKM_EXT.4.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall check to ensure the TSS lists each type of plaintext key 

material (DEKs, software-based key storage, KEKs, trusted channel keys, passwords, etc.) and its generation and 

storage location. 

The evaluator shall verify that the TSS describes when each type of key material is cleared (for example, on system 

power off, on wipe function, on disconnection of trusted channels, when no longer needed by the trusted channel 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 47 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

per the protocol, when transitioning to the locked state, and possibly including immediately after use, while in the 

locked state, etc.). 

The evaluator shall also verify that, for each type of key, the type of clearing procedure that is performed 

(cryptographic erase, overwrite with zeros, overwrite with random pattern, or block erase) is listed. If different 

types of memory are used to store the materials to be protected, the evaluator shall check to ensure that the TSS 

describes the clearing procedure in terms of the memory in which the data are stored. 

Section 6.2 of the ST states the TOE clears sensitive cryptographic material (plaintext keys, authentication and 

biometric data, and other security parameters) from memory when no longer needed or when transitioning to the 

device’s locked state (in the case of the Sensitive Data Protection keys). Public keys (such as the one used for 

Sensitive Data Protection) can remain in memory when the phone is locked, but all crypto-related private keys are 

evicted from memory upon device lock. No plaintext cryptographic material resides in the TOE’s Flash as the TOE 

encrypts all keys stored in Flash. When performing a full wipe of protected data, the TOE cryptographically erases 

the protected data by clearing the Data-At-Rest DEK. Because the Android Keystore of the TOE resides within the 

user data partition, the TOE effectively cryptographically erases those keys when clearing the Data-At-Rest DEK. In 

turn, the TOE clears the Data-At-Rest DEK and Secure Key Storage SEK through a secure direct overwrite 

(BLKSECDISCARD ioctl) of the wear-leveled Flash memory containing the key followed by a read-verify. Detailed 

information is provided in the KMD in the FCS_CKM_EXT.4 discussion. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: Evaluation Activity Note: The following tests require the developer to 

provide access to a test platform that provides the evaluator with tools that are typically not found on factory 

products. 

For each software and firmware key clearing situation (including on system power off, on wipe function, on 

disconnection of trusted channels, when no longer needed by the trusted channel per the protocol, when 

transitioning to the locked state, and possibly including immediately after use, while in the locked state) the 

evaluator shall repeat the following tests. 

For these tests the evaluator shall utilize appropriate development environment (e.g. a Virtual Machine) and 

development tools (debuggers, simulators, etc.) to test that keys are cleared, including all copies of the key that 

may have been created internally by the TOE during normal cryptographic processing with that key. 

Test 3: Applied to each key held as plaintext in volatile memory and subject to destruction by overwrite by the TOE 

(whether or not the plaintext value is subsequently encrypted for storage in volatile or non-volatile memory). In 

the case where the only selection made for the destruction method key was removal of power, then this test is 

unnecessary. The evaluator shall: 

1. Record the value of the key in the TOE subject to clearing. 

2. Cause the TOE to perform a normal cryptographic processing with the key from Step #1. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 48 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

3. Cause the TOE to clear the key. 

4. Cause the TOE to stop the execution but not exit. 

5. Cause the TOE to dump the entire memory of the TOE into a binary file. 

6. Search the content of the binary file created in Step #5 for instances of the known key value from Step #1. 

7. Break the key value from Step #1 into 3 similar sized pieces and perform a search using each piece. 

Steps 1-6 ensure that the complete key does not exist anywhere in volatile memory. If a copy is found, then the 

test fails. 

Step 7 ensures that partial key fragments do not remain in memory. If a fragment is found, there is a minuscule 

chance that it is not within the context of a key (e.g., some random bits that happen to match). If this is the case 

the test should be repeated with a different key in Step #1. If a fragment is found the test fails. 

Test 4: Applied to each key held in non-volatile memory and subject to destruction by overwrite by the TOE. The 

evaluator shall use special tools (as needed), provided by the TOE developer if necessary, to view the key storage 

location: 

1. Record the value of the key in the TOE subject to clearing. 

2. Cause the TOE to perform a normal cryptographic processing with the key from Step #1. 

3. Cause the TOE to clear the key. 

4. Search the non-volatile memory the key was stored in for instances of the known key value from Step #1. If a 

copy is found, then the test fails. 

5. Break the key value from Step #1 into 3 similar sized pieces and perform a search using each piece. If a fragment 

is found then the test is repeated (as described for test 1 above), and if a fragment is found in the repeated test 

then the test fails. 

Test 5: Applied to each key held as non-volatile memory and subject to destruction by overwrite by the TOE. The 

evaluator shall use special tools (as needed), provided by the TOE developer if necessary, to view the key storage 

location: 

1. Record the storage location of the key in the TOE subject to clearing. 

2. Cause the TOE to perform a normal cryptographic processing with the key from Step #1. 

3. Cause the TOE to clear the key. 

4. Read the storage location in Step #1 of non-volatile memory to ensure the appropriate pattern is utilized. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 49 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The test succeeds if correct pattern is used to overwrite the key in the memory location. If the pattern is not found 

the test fails. 

Test 3 – The vendor provided a special build of the TOE. The evaluator used that build to run a series of memory 

dump tests that dumped the memory on the device.  The evaluator took the memory dumps and searched those 

dumps with a hex search tool to search for known keys.   The evaluator was unable to find any of the keys in the 

dump files. 

Test 4 – Not applicable.  This test does not apply as the TOE does not store any plaintext keys in Flash and does not 

overwrite key values in Flash (but instead uses block erases).  

Test 5 - Not applicable.  This test does not apply as the TOE does not store any plaintext keys in Flash and does not 

overwrite key values in Flash (but instead uses block erases).. 

 

2.2.10 TSF WIPE  (MDFPP33:FCS_CKM_EXT.5) 

 

2.2.10.1 MDFPP33:FCS_CKM_EXT.5.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.2.10.2 MDFPP33:FCS_CKM_EXT.5.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall check to ensure the TSS describes how the device is 

wiped, the type of clearing procedure that is performed (cryptographic erase or overwrite) and, if overwrite is 

performed, the overwrite procedure (overwrite with zeros, overwrite three or more times by a different 

alternating pattern, overwrite with random pattern, or block erase). 

If different types of memory are used to store the data to be protected, the evaluator shall check to ensure that 

the TSS describes the clearing procedure in terms of the memory in which the data are stored (for example, data 

stored on flash are cleared by overwriting once with zeros, while data stored on the internal persistent storage 

device are cleared by overwriting three times with a random pattern that is changed before each write). 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 50 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Section 6.2 of the ST states the TOE stores all protected data in encrypted form within the user data partition 

(either protected data or sensitive data). Upon request, the TOE cryptographically erases the Data-At-Rest DEK 

protecting the user data partition and the SDP Master KEK protecting sensitive data files in the user data partition, 

clears those keys from memory, reformats the partition, and then reboots. The TOE’s clearing of the keys follows 

the requirements of MDFPP33:FCS_CKM_EXT.4. 

Component Guidance Assurance Activities: The evaluator shall verify that the AGD guidance describes how to 

enable encryption, if it is not enabled by default. Additionally the evaluator shall verify that the AGD guidance 

describes how to initiate the wipe command. 

Section 2.1 Data Protection details that the Zebra devices use file-based encryption by default. Section 3.6 provides 

the command for wiping the device. 

Component Testing Assurance Activities: Evaluation Activity Note: The following test may require the developer 

to provide access to a test platform that provides the evaluator with tools that are typically not found on consumer 

Mobile Device products. 

Test 6: The evaluator shall perform one of the following tests. The test before and after the wipe command shall 

be identical. This test shall be repeated for each type of memory used to store the data to be protected. 

Test 6.1  for File-based Methods: 

The evaluator shall enable encryption according to the AGD guidance. The evaluator shall create a user data 

(protected data or sensitive data) file, for example, by using an application. The evaluator shall use a tool provided 

by the developer to examine this data stored in memory (for example, by examining a decrypted files). The 

evaluator shall initiate the wipe command according to the AGD guidance provided for FMT_SMF.1. The evaluator 

shall use a tool provided by the developer to examine the same data location in memory to verify that the data has 

been wiped according to the method described in the TSS (for example, the files are still encrypted and cannot be 

accessed). 

Test 6.2  for Volume-based Methods: 

The evaluator shall enable encryption according to the AGD guidance. The evaluator shall create a unique data 

string, for example, by using an application. The evaluator shall use a tool provided by the developer to search 

decrypted data for the unique string. The evaluator shall initiate the wipe command according to the AGD 

guidance provided for FMT_SMF.1. The evaluator shall use a tool provided by the developer to search for the same 

unique string in decrypted memory to verify that the data has been wiped according to the method described in 

the TSS (for example, the files are still encrypted and cannot be accessed). 

Test 7: The evaluator shall cause the device to wipe and verify that the wipe concludes with a power cycle. 

Test 6.1 (for File-based Methods) – The evaluator used a debug version of the TOE to access the location of several 

important files, necessary for the TOE to access and decrypt the File-Based Encryption (FBE) DEKs.  The evaluator 

used a script to record the LBA (Logical Block Address) of the files' data blocks and then dumped the blocks from 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 51 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

the raw partition (thus obtaining the ciphertext that resides on the Flash filesystem).  The evaluator then wiped the 

TOE and then accessed the TOE’s partitions.  The evaluator found that none of the recorded files were present any 

longer in the TOE’s partitions/filesystems.  

Test 6.2 (for Volume-based methods) – Not applicable.  The TOE uses file-based encryption and not volume-based 

encryption. 

Test 7 – As part of test 6.1, the evaluator verified that the wipe concludes with a power cycle. 

 

2.2.11 SALT GENERATION  (MDFPP33:FCS_CKM_EXT.6) 

 

2.2.11.1 MDFPP33:FCS_CKM_EXT.6.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall verify that the TSS contains a description regarding the 

salt generation, including which algorithms on the TOE require salts. The evaluator shall confirm that the salt is 

generated using an RBG described in FCS_RBG_EXT.1. For PBKDF derivation of KEKs, this evaluation activity may be 

performed in conjunction with FCS_CKM_EXT.3.2. 

Section 6.2 of the ST states the TOE generates salt nonces (which are just salt values used in WPA2/WPA3) using its 

/dev/urandom. The table below indicates the salt value and size, RBG origin and salt storage location. The salt is 

generated with BoringSSL’s AES-256 CTR_DRBG which is consistent with the RBG described in 

MDFPP33:FCS_RBG_EXT.1. 

Salt value and size RBG origin Salt storage location 

User password salt (128-bit) BoringSSL’s AES-256 CTR_DRBG Flash filesystem 

TLS client_random (256-bit) BoringSSL’s AES-256 CTR_DRBG N/A (ephemeral) 

TLS pre_master_secret (384-bit) BoringSSL’s AES-256 CTR_DRBG N/A (ephemeral) 

WPA2/WPA3 4-way handshake supplicant 
nonce (SNonce) 

BoringSSL’s AES-256 CTR_DRBG N/A (ephemeral) 

 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.2.12 BLUETOOTH KEY GENERATION  (BT10:FCS_CKM_EXT.8) 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 52 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

 

2.2.12.1 BT10:FCS_CKM_EXT.8.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall ensure that the TSS describes the criteria used to 

determine the frequency of generating new ECDH public/private key pairs. In particular, the evaluator shall ensure 

that the implementation does not permit the use of static ECDH key pairs. 

The ST states the TOE generates public/private ECDH key pairs every blue connection establishment. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The evaluator shall perform the following steps: 

Step 1: Pair the TOE to a remote Bluetooth device and record the public key currently in use by the TOE. (This 

public key can be obtained using a Bluetooth protocol analyzer to inspect packets exchanged during pairing.) 

Step 2: Perform necessary actions to generate new ECDH public/private key pairs. (Note that this test step 

depends on how the TSS describes the criteria used to determine the frequency of generating new ECDH 

public/private key pairs.) 

Step 3: Pair the TOE to a remote Bluetooth device and again record the public key currently in use by the TOE. 

Step 4: Verify that the public key in Step 1 differs from the public key in Step 3. 

Test - The evaluator set up each of the TOE devices one at a time to snoop Bluetooth connections and then 

advertise for Bluetooth.  For each TOE device, the evaluator used a test device to repeatedly attempt to pair with 

the TOE device – the attempts were alternately accepted and rejected (cancelled on the TOE device). The test 

device was unpaired immediately after every successful pairing. After several attempts were concluded, the 

Bluetooth log was collected from the TOE device.  The evaluator found that the public keys were different in every 

case indicating that the public key pairs change for every pairing attempt. 

 

2.2.13 CRYPTOGRAPHIC OPERATION  (MDFPP33:FCS_COP.1/CONDITION) 

 

2.2.13.1 MDFPP33:FCS_COP.1.1/CONDITION 

TSS Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 53 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall check that the TSS describes the method by which the 

password is first encoded and then fed to the SHA algorithm and verify the SHA algorithm matches the first 

selection. 

If a key stretching function, such as PBKDF2, is selected the settings for the algorithm (padding, blocking, etc.) shall 

be described. The evaluator shall verify that the TSS contains a description of how the output of the hash function 

or key stretching function is used to form the submask that will be input into the function and is the same length as 

the KEK as specified in FCS_CKM_EXT.3. 

If any manipulation of the key is performed in forming the submask that will be used to form the KEK, that process 

shall be described in the TSS. 

Section 6.2 of the ST states The TOE stretches the user’s password to create a password derived key.  The TOE 

stretching function uses a series of steps to increase the memory required for key derivation (thus thwarting GPU-

acceleration, off-line brute force, and precomputed dictionary attacks) and ensure proper conditioning and 

stretching of the user’s password.   

The TOE conditions the user’s password using two iterations of PBKDFv2 w HMAC-SHA-256 in addition to some 

ROMix operations in an algorithm named scrypt.  Scrypt consists of one iteration of PBKDFv2, followed by a series 

of ROMix operations, and finished with a final iteration of PBKDFv2.  The ROMix operations increase the memory 

required for key derivation, thus thwarting GPU-acceleration (which can greatly decrease the time needed to brute 

force PBKDFv2 alone). The time needed to derive keying material does not impact or lessen the difficulty faced by 

an attacker’s exhaustive guessing as the combination of the password derived KEK with REK value entirely prevents 

offline attacks and the TOE’s maximum incorrect login attempts. 

The following scrypt diagram shows how the password and salt are used with PBKDFv2 and ROMix to fulfil the 

requirements for password conditioning. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 54 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

 

The resulting derived key from this operation is combined with keys chaining to the Application Processor REK and 

then used to decrypt the FBE DEKs and also to derive the User Keystore Daemon Value 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: There are no test evaluation activities for this component. No explicit 

testing of the formation of the submask from the input password is required. 

No testing required. 

2.2.14 CRYPTOGRAPHIC OPERATION  (MDFPP33:FCS_COP.1/ENCRYPT) 

 

2.2.14.1 MDFPP33:FCS_COP.1.1/ENCRYPT 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: Evaluation Activity Note: The following tests require the developer to 

provide access to a test platform that provides the evaluator with tools that are typically not found on factory 

products. 

AES-CBC Tests 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 55 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 8: AES-CBC Known Answer Tests 

There are four Known Answer Tests (KATs), described below. In all KATs, the plaintext, ciphertext, and IV values 

shall be 128-bit blocks. The results from each test may either be obtained by the evaluator directly or by supplying 

the inputs to the implementer and receiving the results in response. To determine correctness, the evaluator shall 

compare the resulting values to those obtained by submitting the same inputs to a known good implementation. 

Test 8.1: KAT-1. To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of 10 plaintext values 

and obtain the ciphertext value that results from AES-CBC encryption of the given plaintext using a key value of all 

zeros and an IV of all zeros. Five plaintext values shall be encrypted with a 128-bit all-zeros key, and the other five 

shall be encrypted with a 256-bit all-zeros key. 

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt, using 10 

ciphertext values as input and AES-CBC decryption. 

Test 8.2: KAT-2. To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of 10 key values and 

obtain the ciphertext value that results from AES-CBC encryption of an all-zeros plaintext using the given key value 

and an IV of all zeros. Five of the keys shall be 128-bit keys, and the other five shall be 256-bit keys. 

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt, using an all-

zero ciphertext value as input and AES-CBC decryption. 

Test 8.3: KAT-3. To test the encrypt functionality of AES-CBC, the evaluator shall supply the two sets of key values 

described below and obtain the ciphertext value that results from AES encryption of an all-zeros plaintext using the 

given key value and an IV of all zeros. The first set of keys shall have 128 128-bit keys, and the second set shall have 

256 256-bit keys. Key i in each set shall have the leftmost i bits be ones and the rightmost N-i bits be zeros, for i in 

[1,N]. 

To test the decrypt functionality of AES-CBC, the evaluator shall supply the two sets of key and ciphertext value 

pairs described below and obtain the plaintext value that results from AES-CBC decryption of the given ciphertext 

using the given key and an IV of all zeros. The first set of key/ciphertext pairs shall have 128 128-bit key/ciphertext 

pairs, and the second set of key/ciphertext pairs shall have 256 256-bit key/ciphertext pairs. Key i in each set shall 

have the leftmost i bits be ones and the rightmost N-i bits be zeros, for i in [1,N]. The ciphertext value in each pair 

shall be the value that results in an all-zeros plaintext when decrypted with its corresponding key. 

Test 8.4: KAT-4. To test the encrypt functionality of AES-CBC, the evaluator shall supply the set of 128 plaintext 

values described below and obtain the two ciphertext values that result from AES-CBC encryption of the given 

plaintext using a 128-bit key value of all zeros with an IV of all zeros and using a 256-bit key value of all zeros with 

an IV of all zeros, respectively. Plaintext value i in each set shall have the leftmost i bits be ones and the rightmost 

128-i bits be zeros, for i in [1,128]. 

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt, using 

ciphertext values of the same form as the plaintext in the encrypt test as input and AES-CBC decryption. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 56 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 9: AES-CBC Multi-Block Message Test 

The evaluator shall test the encrypt functionality by encrypting an i-block message where 1 < i <= 10. The evaluator 

shall choose a key, an IV and plaintext message of length i blocks and encrypt the message, using the mode to be 

tested, with the chosen key and IV. The ciphertext shall be compared to the result of encrypting the same plaintext 

message with the same key and IV using a known good implementation. 

The evaluator shall also test the decrypt functionality for each mode by decrypting an i-block message where 1 < i 

<= 10. The evaluator shall choose a key, an IV and a ciphertext message of length i blocks and decrypt the message, 

using the mode to be tested, with the chosen key and IV. The plaintext shall be compared to the result of 

decrypting the same ciphertext message with the same key and IV using a known good implementation. 

Test 10: AES-CBC Monte Carlo Tests 

The evaluator shall test the encrypt functionality using a set of 200 plaintext, IV, and key 3-tuples. 100 of these 

shall use 128 bit keys, and 100 shall use 256 bit keys. The plaintext and IV values shall be 128-bit blocks. For each 3-

tuple, 1000 iterations shall be run as follows: 

# Input: PT, IV, Key for i = 1 to 1000: if i == 1: CT[1] =  

AES-CBC-Encrypt(Key, IV, PT) PT = IV else: CT[i] = AES-CBC-Encrypt(Key, PT) PT = CT[i-1] 

The ciphertext computed in the 1000 iteration (i.e., CT[1000]) is the result for that trial. This result shall be 

compared to the result of running 1000 iterations with the same values using a known good implementation. 

The evaluator shall test the decrypt functionality using the same test as for encrypt, exchanging CT and PT and 

replacing AES-CBC-Encrypt with AES-CBC-Decrypt. 

AES-CCM Tests 

Test 11: The evaluator shall test the generation-encryption and decryption-verification functionality of AES-CCM 

for the following input parameter and tag lengths: 

128 bit and 256 bit keys 

Two payload lengths. One payload length shall be the shortest supported payload length, greater than or equal to 

zero bytes. The other payload length shall be the longest supported payload length, less than or equal to 32 bytes 

(256 bits). 

Two or three associated data lengths. One associated data length shall be 0, if supported. One associated data 

length shall be the shortest supported payload length, greater than or equal to zero bytes. One associated data 

length shall be the longest supported payload length, less than or equal to 32 bytes (256 bits). If the 

implementation supports an associated data length of 2 bytes, an associated data length of 2^16 bytes shall be 

tested. 

Nonce lengths. All supported nonce lengths between 7 and 13 bytes, inclusive, shall be tested. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 57 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Tag lengths. All supported tag lengths of 4, 6, 8, 10, 12, 14 and 16 bytes shall be tested. 

To test the generation-encryption functionality of AES-CCM, the evaluator shall perform the following four tests: 

Test 11.1: For EACH supported key and associated data length and ANY supported payload, nonce and tag length, 

the evaluator shall supply one key value, one nonce value and 10 pairs of associated data and payload values and 

obtain the resulting ciphertext. 

Test 11.2: For EACH supported key and payload length and ANY supported associated data, nonce and tag length, 

the evaluator shall supply one key value, one nonce value and 10 pairs of associated data and payload values and 

obtain the resulting ciphertext. 

Test 11.3: For EACH supported key and nonce length and ANY supported associated data, payload and tag length, 

the evaluator shall supply one key value and 10 associated data, payload and nonce value 3-tuples and obtain the 

resulting ciphertext. 

Test 11.4: For EACH supported key and tag length and ANY supported associated data, payload and nonce length, 

the evaluator shall supply one key value, one nonce value and 10 pairs of associated data and payload values and 

obtain the resulting ciphertext. 

To determine correctness in each of the above tests, the evaluator shall compare the ciphertext with the result of 

generation-encryption of the same inputs with a known good implementation. 

To test the decryption-verification functionality of AES-CCM, for EACH combination of supported associated data 

length, payload length, nonce length and tag length, the evaluator shall supply a key value and 15 nonce, 

associated data and ciphertext 3-tuples and obtain either a FAIL result or a PASS result with the decrypted payload. 

The evaluator shall supply 10 tuples that should FAIL and 5 that should PASS per set of 15. 

AES-GCM Test 

The evaluator shall test the authenticated encrypt functionality of AES-GCM for each combination of the following 

input parameter lengths: 

128 bit and 256 bit keys 

Two plaintext lengths. One of the plaintext lengths shall be a non-zero integer multiple of 128 bits, if supported. 

The other plaintext length shall not be an integer multiple of 128 bits, if supported. 

Three AAD lengths. One AAD length shall be 0, if supported. One AAD length shall be a non-zero integer multiple of 

128 bits, if supported. One AAD length shall not be an integer multiple of 128 bits, if supported. 

Two IV lengths. If 96 bit IV is supported, 96 bits shall be one of the two IV lengths tested. 

Test 12: The evaluator shall test the encrypt functionality using a set of 10 key, plaintext, AAD, and IV tuples for 

each combination of parameter lengths above and obtain the ciphertext value and tag that results from AES-GCM 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 58 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

authenticated encrypt. Each supported tag length shall be tested at least once per set of 10. The IV value may be 

supplied by the evaluator or the implementation being tested, as long as it is known. 

Test 13: The evaluator shall test the decrypt functionality using a set of 10 key, ciphertext, tag, AAD, and IV 5-

tuples for each combination of parameter lengths above and obtain a Pass/Fail result on authentication and the 

decrypted plaintext if Pass. The set shall include five tuples that Pass and five that Fail. 

The results from each test may either be obtained by the evaluator directly or by supplying the inputs to the 

implementer and receiving the results in response. To determine correctness, the evaluator shall compare the 

resulting values to those obtained by submitting the same inputs to a known good implementation. 

XTS-AES Test 

Test 14: The evaluator shall test the encrypt functionality of XTS-AES for each combination of the following input 

parameter lengths: 

256 bit (for AES-128) and 512 bit (for AES-256) keys 

Three data unit (i.e., plaintext) lengths. One of the data unit lengths shall be a non-zero integer multiple of 128 

bits, if supported. One of the data unit lengths shall be an integer multiple of 128 bits, if supported. The third data 

unit length shall be either the longest supported data unit length or 216 bits, whichever is smaller. 

using a set of 100 (key, plaintext and 128-bit random tweak value) 3-tuples and obtain the ciphertext that results 

from XTS-AES encrypt. 

The evaluator may supply a data unit sequence number instead of the tweak value if the implementation supports 

it. The data unit sequence number is a base-10 number ranging between 0 and 255 that implementations convert 

to a tweak value internally. 

Test 15: The evaluator shall test the decrypt functionality of XTS-AES using the same test as for encrypt, replacing 

plaintext values with ciphertext values and XTS-AES encrypt with XTS-AES decrypt. 

AES Key Wrap (AES-KW) and Key Wrap with Padding (AES-KWP) Test 

Test 16: The evaluator shall test the authenticated encryption functionality of AES-KW for EACH combination of the 

following input parameter lengths: 

128 and 256 bit key encryption keys (KEKs) 

Three plaintext lengths. One of the plaintext lengths shall be two semi-blocks (128 bits). One of the plaintext 

lengths shall be three semi-blocks (192 bits). The third data unit length shall be the longest supported plaintext 

length less than or equal to 64 semi-blocks (4096 bits). 

using a set of 100 key and plaintext pairs and obtain the ciphertext that results from AES-KW authenticated 

encryption. To determine correctness, the evaluator shall use the AES-KW authenticated-encryption function of a 

known good implementation. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 59 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 17: The evaluator shall test the authenticated-decryption functionality of AES-KW using the same test as for 

authenticated-encryption, replacing plaintext values with ciphertext values and AES-KW authenticated-encryption 

with AES-KW authenticated-decryption. 

Test 18: The evaluator shall test the authenticated-encryption functionality of AES-KWP using the same test as for 

AES-KW authenticated-encryption with the following change in the three plaintext lengths: 

- One plaintext length shall be one octet. One plaintext length shall be 20 octets (160 bits). 

- One plaintext length shall be the longest supported plaintext length less than or equal to 512 octets (4096 bits). 

Test 19: The evaluator shall test the authenticated-decryption functionality of AES-KWP using the same test as for 

AES-KWP authenticated-encryption, replacing plaintext values with ciphertext values and AES-KWP authenticated-

encryption with AES-KWP authenticated-decryption. 

The TOE has been CAVP tested.  Refer to the CAVP certificates identified in Section 1.2. 

 

2.2.15 CRYPTOGRAPHIC OPERATION  (MDFPP33:FCS_COP.1/HASH) 

 

2.2.15.1 MDFPP33:FCS_COP.1.1/HASH 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall check that the association of the hash function with 

other TSF cryptographic functions (for example, the digital signature verification function) is documented in the 

TSS. The evalutator shall check that the TSS indicates if the hashing function is implemented in bit-oriented and/or 

byte-oriented mode. 

Section 6.2 of the ST states as part of the TLS, the TOE uses SHA with HMAC and digital signatures. Further, the 

section indicates the hashing function is in byte-oriented mode. 

Component Guidance Assurance Activities: The evaluator checks the AGD documents to determine that any 

configuration that is required to be done to configure the functionality for the required hash sizes is present. 

Section 3.1 (Entering into Common Criteria State) in the Admin Guide provides settings and instructions for 

configuring the TOE into Common Criteria Mode. Section 3.4 states that there is no additional configuration 

required to ensure key generation, key sizes, hash sizes, and all other cryptographic functions meet NIAP 

requirements. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 60 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Component Testing Assurance Activities: Evaluation Activity Note: The following tests require the developer to 

provide access to a test platform that provides the evaluator with tools that are typically not found on factory 

products. 

The evaluator shall perform all of the following tests for each hash algorithm implemented by the TSF and used to 

satisfy the requirements of this PP. As there are different tests for each mode, an indication is given in the 

following sections for the bitoriented vs. the byteoriented tests. 

Test 20: Short Messages Test: Bit-oriented Mode 

The evaluators devise an input set consisting of m+1 messages, where m is the block length of the hash algorithm. 

The length of the messages ranges sequentially from 0 to m bits. The message text shall be pseudorandomly 

generated. The evaluators compute the message digest for each of the messages and ensure that the correct 

result is produced when the messages are provided to the TSF. 

Test 21: Short Messages Test: Byte-oriented Mode 

The evaluators devise an input set consisting of m/8+1 messages, where m is the block length of the hash 

algorithm. The length of the messages range sequentially from 0 to m/8 bytes, with each message being an 

integral number of bytes. The message text shall be pseudorandomly generated. The evaluators compute the 

message digest for each of the messages and ensure that the correct result is produced when the messages are 

provided to the TSF. 

Test 22: Selected Long Messages Test: Bit-oriented Mode 

The evaluators devise an input set consisting of m messages, where m is the block length of the hash algorithm. 

The length of the ith message is 512 + 99*i, where 1 <= i <= m. The message text shall be pseudorandomly 

generated. The evaluators compute the message digest for each of the messages and ensure that the correct 

result is produced when the messages are provided to the TSF. 

Test 23: Selected Long Messages Test: Byte-oriented Mode 

The evaluators devise an input set consisting of m/8 messages, where m is the block length of the hash algorithm. 

The length of the ith message is 512 + 8*99*i, where 1 <= i <= m/8. The message text shall be pseudorandomly 

generated. The evaluators compute the message digest for each of the messages and ensure that the correct 

result is produced when the messages are provided to the TSF. 

Test 24: Pseudorandomly Generated Messages Test: Byte-oriented Mode 

This test is for byte oriented implementations only. The evaluators randomly generate a seed that is n bits long, 

where n is the length of the message digest produced by the hash function to be tested. The evaluators then 

formulate a set of 100 messages and associated digests by following the algorithm provided in Figure 1 of SHAVS. 

The evaluators then ensure that the correct result is produced when the messages are provided to the TSF. 

The TOE has been CAVP tested.  Refer to the CAVP certificates identified in Section 1.2. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 61 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

 

2.2.16 CRYPTOGRAPHIC OPERATION  (MDFPP33:FCS_COP.1/KEYHMAC) 

 

2.2.16.1 MDFPP33:FCS_COP.1.1/KEYHMAC 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall examine the TSS to ensure that it specifies the following 

values used by the HMAC function: key length, hash function used, block size, and output MAC length used. 

Section 6.2 of the ST states the TOE uses HMAC as part of the TLS ciphersuites and makes HMAC functionality 

available to mobile applications. For TLS, the TOE uses HMAC using SHA-1 (with a 160-bit key) to generate a 160-bit 

MAC, SHA-256 (with a 256-bit key) to generate a 256-bit MAC, SHA-384 (with a 384-bit key) to generate a 384-bit 

MAC. For mobile applications, the TOE provides all of the previous HMACs as well as SHA-512 (with a 512-bit key) 

to generate a 512-bit MAC. FIPS 198-1 & 180-4 dictate the block size used, and they specify block sizes/output 

MAC lengths of 512/160, 512/160, 1024/384, and 1024/512-bits for HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-

384, and HMAC-SHA-512 respectively. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: Evaluation Activity Note: The following tests require the developer to 

provide access to a test platform that provides the evaluator with tools that are typically not found on factory 

products. 

For each of the supported parameter sets, the evaluator shall compose 15 sets of test data. Each set shall consist 

of a key and message data. The evaluator shall have the TSF generate HMAC tags for these sets of test data. The 

resulting MAC tags shall be compared to the result of generating HMAC tags with the same key and IV using a 

known good implementation. 

The TOE has been CAVP tested.  Refer to the CAVP certificates identified in Section 1.2. 

 

2.2.17 CRYPTOGRAPHIC OPERATION  (MDFPP33:FCS_COP.1/SIGN) 

 

2.2.17.1 MDFPP33:FCS_COP.1.1/SIGN 

TSS Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 62 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: Evaluation Activity Note: The following tests require the developer to 

provide access to a test platform that provides the evaluator with tools that are typically not found on factory 

products. 

Test 25: [conditional] If ECDSA schemes is selected in FCS_COP.1.1/SIGN 

Test 25.1: ECDSA FIPS 186-4 Signature Generation Test 

For each supported NIST curve (i.e., P-256, P-384 and P-521) and SHA function pair, the evaluator shall generate 10 

1024-bit long messages and obtain for each message a public key and the resulting signature values R and S. To 

determine correctness, the evaluator shall use the signature verification function of a known good 

implementation. 

Test 25.2: ECDSA FIPS 186-4 Signature Verification Test 

For each supported NIST curve (i.e., P-256, P-384 and P-521) and SHA function pair, the evaluator shall generate a 

set of 10 1024-bit message, public key and signature tuples and modify one of the values (message, public key or 

signature) in five of the 10 tuples. The evaluator shall obtain in response a set of 10 PASS/FAIL values. 

Test 26: [conditional] If RSA schemes is selected in FCS_COP.1.1/SIGN 

Test 26.1: Signature Generation Test The evaluator shall verify the implementation of RSA Signature Generation by 

the TOE using the Signature Generation Test. To conduct this test the evaluator must generate or obtain 10 

messages from a trusted reference implementation for each modulus size/SHA combination supported by the TSF. 

The evaluator shall have the TOE use their private key and modulus value to sign these messages. 

The evaluator shall verify the correctness of the TSF's signature using a known good implementation and the 

associated public keys to verify the signatures. 

Test 26.2: Signature Verification Test 

The evaluator shall perform the Signature Verification test to verify the ability of the TOE to recognize another 

party's valid and invalid signatures. The evaluator shall inject errors into the test vectors produced during the 

Signature Verification Test by introducing errors in some of the public keys e, messages, IR format, and/or 

signatures. The TOE attempts to verify the signatures and returns success or failure. 

The evaluator shall use these test vectors to emulate the signature verification test using the corresponding 

parameters and verify that the TOE detects these errors. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 63 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The TOE has been CAVP tested.  Refer to the CAVP certificates identified in Section 1.2. 

 

2.2.18 HTTPS PROTOCOL  (MDFPP33:FCS_HTTPS_EXT.1) 

 

2.2.18.1 MDFPP33:FCS_HTTPS_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.2.18.2 MDFPP33:FCS_HTTPS_EXT.1.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.2.18.3 MDFPP33:FCS_HTTPS_EXT.1.3 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: Test 27: The evaluator shall attempt to establish an HTTPS connection 

with a webserver, observe the traffic with a packet analyzer, and verify that the connection succeeds and that the 

traffic is identified as TLS or HTTPS. 

Other tests are performed in conjunction with testing in the Package for Transport Layer SeFunctional Package for 

TransportLayer Security (TLS), version 1.1. 

Certificate validity shall be tested in accordance with testing performed for FIA_X509_EXT.1, and the evaluator 

shall perform the following test: 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 64 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 28: The evaluator shall demonstrate that using a certificate without a valid certification path results in an 

application notification. Using the administrative guidance, the evaluator shall then load a certificate or certificates 

to the Trust Anchor Database needed to validate the certificate to be used in the function, and demonstrate that 

the function succeeds. The evaluator then shall delete one of the certificates, and show that the application is 

notified of the validation failure. 

Test 27 – This was tested in FCS_TLSC_EXT.1.1-t1 where each connection (using the supported ciphers) successfully 

connected to a test web server.   

Test 28 - This was tested in FCS_TLSC_EXT.1.3-t1, where the same test is performed using a test web server. 

 

2.2.19 INITIALIZATION VECTOR GENERATION  (MDFPP33:FCS_IV_EXT.1) 

 

2.2.19.1 MDFPP33:FCS_IV_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall examine the key hierarchy section of the TSS to ensure 

that the encryption of all keys is described and the formation of the IVs for each key encrypted by the same KEK 

meets FCS_IV_EXT.1. 

Section 6.2 of the ST states the TOE generates IVs by reading from /dev/urandom for use with all keys. In all cases, 

the TOE uses /dev/urandom and generates the IVs in compliance with the requirements of table 11 of MDFPP33. 

The KMD species how the DEK IV is encrypted. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.2.20 RANDOM BIT GENERATION - PER TD0677  (MDFPP33:FCS_RBG_EXT.1) 

 

2.2.20.1 MDFPP33:FCS_RBG_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 65 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Testing Assurance Activities: None Defined 

 

2.2.20.2 MDFPP33:FCS_RBG_EXT.1.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.2.20.3 MDFPP33:FCS_RBG_EXT.1.3 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: Entropy Documentation 

Documentation shall be produced and the evaluator shall perform the activities in accordance with Appendix F - 

Entropy Documentation And Assessment, the 'Clarification to the Entropy Documentation and Assessment'. 

API Documentation 

The evaluator shall verify that the API documentation provided according to Section 5.2.2 Class ADV: 

Development, includes the security functions described in FCS_RBG_EXT.1.3. 

The evaluator shall also confirm that the operational guidance contains appropriate instructions for configuring the 

RNG functionality. 

The TOE provides a number of different RBGs including: 

1. A SHA-256 Hash_DRBG provided in the hardware of the Application Processor. 

2. An AES-256 CTR_DRBG provided by BoringSSL. This is the only accredited and supported DRBG present in 

the system and available to independently developed applications. As such, the TOE provides mobile 

applications access (through an Android Java API) to random data drawn from its AES-256 CTR_DRBG. 

The TOE initializes its AP Hash_DRBG with enough data from its AP hardware noise source to ensure at least 256-

bits of entropy.  The TOE then uses its AP Hash_DRBG to continuously fill the Linux Kernel Random Number 

Generator (LKRNG) input pool, and the LKRNG makes entropy easily available to the rest of the system (e.g., the 

BoringSSL DRBG draws from the LKRNG). 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 66 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The TOE seeds its BoringSSL AES-256 CTR_DRBG using 384-bits of data from /dev/urandom, thus ensuring at least 

256-bits of entropy.  The TOE uses its BoringSSL DRBG for all random generation including salts. 

The entropy used to seed these DRBG is documented in proprietary entropy documentation.  The applicable 

entropy documentation has been reviewed and submitted to NIAP for approval. Note that the entropy analysis has 

been accepted by NIAP. 

Section 10.1 (Cryptographic APIs) in the Admin Guide contains the cryptographic APIs associated with the security 

functions described in FCS_RBG_EXT.1.3. 

Component Testing Assurance Activities: Evaluation Activity Note: The following tests require the developer to 

provide access to a test platform that provides the evaluator with tools that are typically not found on factory 

products. 

The evaluator shall perform 15 trials for the RNG implementation. If the RNG is configurable, the evaluator shall 

perform 15 trials for each configuration. 

If the RNG has prediction resistance enabled, each trial consists of (1) instantiate DRBG, (2) generate the first block 

of random bits (3) generate a second block of random bits (4) uninstantiate. The evaluator verifies that the second 

block of random bits is the expected value. The evaluator shall generate eight input values for each trial. The first is 

a count (0 - 14). The next three are entropy input, nonce, and personalization string for the instantiate operation. 

The next two are additional input and entropy input for the first call to generate. The final two are additional input 

and entropy input for the second call to generate. These values are randomly generated. 'generate one block of 

random bits' means to generate random bits with number of returned bits equal to the Output Block Length (as 

defined in NIST SP800-90A). 

If the RNG does not have prediction resistance, each trial consists of (1) instantiate DRBG, (2) generate the first 

block of random bits (3) reseed, (4) generate a second block of random bits (5) uninstantiate. The evaluator verifies 

that the second block of random bits is the expected value. The evaluator shall generate eight input values for 

each trial. The first is a count (0 - 14). The next three are entropy input, nonce, and personalization string for the 

instantiate operation. The fifth value is additional input to the first call to generate. The sixth and seventh are 

additional input and entropy input to the call to reseed. The final value is additional input to the second generate 

call. 

The following paragraphs contain more information on some of the input values to be generated/selected by the 

evaluator. 

Entropy input: the length of the entropy input value must equal the seed length. 

Nonce: If a nonce is supported (CTR_DRBG with no Derivation Function does not use a nonce), the nonce bit length 

is one-half the seed length. 

Personalization string: The length of the personalization string must be <= seed length. If the implementation only 

supports one personalization string length, then the same length can be used for both values. If more than one 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 67 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

string length is support, the evaluator shall use personalization strings of two different lengths. If the 

implementation does not use a personalization string, no value needs to be supplied. 

Additional input: the additional input bit lengths have the same defaults and restrictions as the personalization 

string lengths. 

The TOE has been CAVP tested.  Refer to the CAVP certificates identified in Section 1.2. 

 

2.2.21 CRYPTOGRAPHIC ALGORITHM SERVICES  (MDFPP33:FCS_SRV_EXT.1) 

 

2.2.21.1 MDFPP33:FCS_SRV_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: The evaluator shall verify that the API documentation provided 

according to Section 5.2.2 Class ADV: Development includes the security functions (cryptographic algorithms) 

described in these requirements. 

Section 9 (FDP_DAR_EXT.2 & FCS_CKM.2(2)- Sensitive Data Protection Overview) in the Admin Guide describes the 

APIs for files that require sensitive data protection.  Section 10 (API Specification) of the Admin Guide contains the 

Cryptographic APIs. There is a specific API for each cryptographic algorithm specified in the FCS_SRV_EXT.1.1 

requirement 

Component Testing Assurance Activities: The evaluator shall write, or the developer shall provide access to, an 

application that requests cryptographic operations by the TSF. The evaluator shall verify that the results from the 

operation match the expected results according to the API documentation. This application may be used to assist 

in verifying the cryptographic operation Evaluation Activities for the other algorithm services requirements. 

Test – The evaluator developed and ran a test program to demonstrate the available APIs as detailed through 

available documentation. The test program outputs data to the logcat.  The evaluator analyzed the logcat for the 

associated results and found all operations addressed and succeeded.  

 

2.2.22 CRYPTOGRAPHIC ALGORITHM SERVICES  (MDFPP33:FCS_SRV_EXT.2) 

 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 68 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

2.2.22.1 MDFPP33:FCS_SRV_EXT.2.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: The evaluator shall verify that the API documentation for the secure 

key storage includes the cryptographic operations by the stored keys. 

Section 10 (API Specification) of the Admin Guide contains the Cryptographic APIs. There is a specific API for each 

cryptographic algorithm specified in the FCS_SRV_EXT.2.1 requirement. 

Component Testing Assurance Activities: The evaluator shall verify that the API documentation for the secure key 

storage includes the cryptographic operations by the stored keys. 

The evaluator shall write, or the developer shall provide access to, an application that requests cryptographic 

operations of stored keys by the TSF. The evaluator shall verify that the results from the operation match the 

expected results according to the API documentation. The evaluator shall use these APIs to test the functionality of 

the secure key storage according to the Evaluation Activities in FCS_STG_EXT.1. 

Test - See Test Case MDFPP33:FCS_SRV_EXT.1 as both the secure key storage (Android Keystore) and the CAVP-

certified cryptographic library, BoringSSL (also referred to as AndroidOpenSSL) security providers were tested.  In 

that test, the evaluator walked through the various cryptographic mechanisms available to applications for both 

security providers including all of the algorithms claimed under the ST. 

 

2.2.23 CRYPTOGRAPHIC KEY STORAGE  (MDFPP33:FCS_STG_EXT.1) 

 

2.2.23.1 MDFPP33:FCS_STG_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.2.23.2 MDFPP33:FCS_STG_EXT.1.2 

TSS Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 69 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.2.23.3 MDFPP33:FCS_STG_EXT.1.3 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.2.23.4 MDFPP33:FCS_STG_EXT.1.4 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.2.23.5 MDFPP33:FCS_STG_EXT.1.5 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall review the TSS to determine that the TOE implements 

the required secure key storage. The evaluator shall ensure that the TSS contains a description of the key storage 

mechanism that justifies the selection of 'mutable hardware' or 'software-based'. 

Section 6.2 explains the TOE provides the user, administrator and mobile applications the ability to import and use 

asymmetric public and private keys into the TOE’s software-based Secure Key Storage. Certificates are stored in 

files using UID-based permissions and an API virtualizes the access. Additionally, the user and administrator can 

request the TOE to destroy the keys stored in the Secure Key Storage. While normally mobile applications cannot 

use or destroy the keys of another application, applications that share a common application developer (and are 

thus signed by the same developer key) may do so. In other words, applications with a common developer (and 

which explicitly declare a shared UUID in their application manifest) may use and destroy each other’s keys located 

within the Secure Key Storage. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 70 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The TOE provides additional protections on keys beyond including key attestation, to allow enterprises and 

application developers the ability to ensure which keys have been generated securely within the phone. 

Component Guidance Assurance Activities: The evaluator shall verify that the API documentation provided 

according to Section 5.2.2 Class ADV: Development includes the security functions (import, use, and destruction) 

described in these requirements. The API documentation shall include the method by which applications restrict 

access to their keys or secrets in order to meet FCS_STG_EXT.1.4. 

The evaluator shall review the AGD guidance to determine that it describes the steps needed to import or destroy 

keys or secrets. 

The table entry “Certificate Management” in Section 3.6 (Common Criteria Related Settings) of the Admin Guide 

explains how to import and remove certificates. The table entry “Encryption” in Section 3.6 of the Admin Guide 

explains how to wipe a device. Section 10 (API Specification) of the Admin Guide contains the cryptographic APIs.  

These APIs address importing, using and deleting private keys. 

Component Testing Assurance Activities: The evaluator shall test the functionality of each security function: 

Test 29: The evaluator shall import keys or secrets of each supported type according to the AGD guidance. The 

evaluator shall write, or the developer shall provide access to, an application that generates a key or secret of each 

supported type and calls the import functions. The evaluator shall verify that no errors occur during import. 

Test 30: The evaluator shall write, or the developer shall provide access to, an application that uses an imported 

key or secret: 

- For RSA, the secret shall be used to sign data. 

- For ECDSA, the secret shall be used to sign data 

In the future additional types will be required to be tested: 

- For symmetric algorithms, the secret shall be used to encrypt data. 

- For persistent secrets, the secret shall be compared to the imported secret. 

The evaluator shall repeat this test with the application-imported keys or secrets and a different application's 

imported keys or secrets. The evaluator shall verify that the TOE requires approval before allowing the application 

to use the key or secret imported by the user or by a different application: 

- The evaluator shall deny the approvals to verify that the application is not able to use the key or secret as 

described. 

- The evaluator shall repeat the test, allowing the approvals to verify that the application is able to use the 

key/secret as described. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 71 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

If the ST author has selected 'common application developer', this test is performed by either using applications 

from different developers or appropriately (according to API documentation) not authorizing sharing. 

Test 31: The evaluator shall destroy keys or secrets of each supported type according to the AGD guidance. The 

evaluator shall write, or the developer shall provide access to, an application that destroys an imported key or 

secret. 

The evaluator shall repeat this test with the application-imported keys or secrets and a different application's 

imported keys or secrets. The evaluator shall verify that the TOE requires approval before allowing the application 

to destroy the key or secret imported by the administrator or by a different application: 

- The evaluator shall deny the approvals and verify that the application is still able to use the key or secret as 

described. 

- The evaluator shall repeat the test, allowing the approvals and verifying that the application is no longer able to 

use the key or secret as described. 

If the ST author has selected 'common application developer', this test is performed by either using applications 

from different developers or appropriately (according to API documentation) not authorizing sharing. 

Test 29 – The evaluator developed an application to generate a key of each of the supported types and import 

them into the platform keystore. Keys were imported successfully.  

Test 30 – The evaluator ran the same application used in Test 29.  The evaluator then used a second application to 

attempt to use and delete the keys generated by the first application.  The second application could not access the 

keys to delete them.  The evaluator then surveyed the keystore location and confirmed that the keys had not been 

modified.  

Test 31 - This test case builds upon the previous test case.  The evaluator uninstalled the second application used 

in Test 30 and installed a different version of the same application that was configured with the same sharedUserId 

and sharedUserLabel in the Android Manifest as the first application in Test 29.  The evaluator then used this third 

application to attempt to use and delete the keys generated by the first application.  The application was able to 

access the previously generated keys from a different application only when the second application was configured 

with matching UID information by the same developer. 

 

2.2.24 ENCRYPTED CRYPTOGRAPHIC KEY STORAGE  (MDFPP33:FCS_STG_EXT.2) 

 

2.2.24.1 MDFPP33:FCS_STG_EXT.2.1 

TSS Assurance Activities: The evaluator shall review the TSS to determine that the TSS includes key hierarchy 

description of the protection of each DEK for data-at-rest, of software-based key storage, of long-term trusted 

channel keys, and of KEK related to the protection of the DEKs, long-term trusted channel keys, and software-



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 72 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

based key storage. This description must include a diagram illustrating the key hierarchy implemented by the TOE 

in order to demonstrate that the implementation meets FCS_STG_EXT.2. The description shall indicate how the 

functionality described by FCS_RBG_EXT.1 is invoked to generate DEKs (FCS_CKM_EXT.2), the key size 

(FCS_CKM_EXT.2 and FCS_CKM_EXT.3) for each key, how each KEK is formed (generated, derived, or combined 

according to FCS_CKM_EXT.3), the integrity protection method for each encrypted key (FCS_STG_EXT.3), and the 

IV generation for each key encrypted by the same KEK (FCS_IV_EXT.1). More detail for each task follows the 

corresponding requirement. 

The evaluator shall also ensure that the documentation of the product's encryption key management is detailed 

enough that, after reading, the product's key management hierarchy is clear and that it meets the requirements to 

ensure the keys are adequately protected. The evaluator shall ensure that the documentation includes both an 

essay and one or more diagrams. Note that this may also be documented as separate proprietary evidence rather 

than being included in the TSS. 

Section 6.2 of the ST state the TOE employs a key hierarchy that protects all DEKs and KEKs by encryption with 

either the REK or by the REK and password derived KEK. 

The TOE encrypts Long-term Trusted channel Key Material (LTTCKM, i.e., Bluetooth and Wi-Fi keys) values using 

AES-256 GCM encryption and stores the encrypted values within their respective configuration files. 

All keys are 256-bits in size. All keys are generated using the TOE’S BoringSSL AES-256 CTR_DRBG or application 

processor SHA-256 Hash_DRBG. By utilizing only 256-bit KEKs, the TOE ensures that all keys are encrypted by an 

equal or larger sized key. 

In the case of Wi-Fi, the TOE utilizes the 802.11-2012 KCK and KEK keys to unwrap (decrypt) the WPA2/WPA3 

Group Temporal Key received from the access point. The TOE protects persistent Wi-Fi keys (user certificates and 

private keys) by storing them in the Android Key Store. 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.2.24.2 MDFPP33:FCS_STG_EXT.2.2 

TSS Assurance Activities: The evaluator shall examine the key hierarchy description in the TSS section to verify that 

each DEK and software-stored key is encrypted according to FCS_STG_EXT.2. 

See MDFP33P:FCS_STG_EXT.2.1.  Additionally, Section 6.2 (MDFPP33:FCS_STG_EXT.3) in the ST states that the TOE 

protects the integrity of all DEKs and KEKs (other than LTTCKM keys) stored in Flash by using authenticated 

encryption/decryption methods (CCM, GCM). 

Guidance Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 73 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.2.25 INTEGRITY OF ENCRYPTED KEY STORAGE  (MDFPP33:FCS_STG_EXT.3) 

 

2.2.25.1 MDFPP33:FCS_STG_EXT.3.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.2.25.2 MDFPP33:FCS_STG_EXT.3.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall examine the key hierarchy description in the TSS section 

to verify that each encrypted key is integrity protected according to one of the options in FCS_STG_EXT.3. 

The evaluator shall also ensure that the documentation of the product's encryption key management is detailed 

enough that, after reading, the product's key management hierarchy is clear and that it meets the requirements to 

ensure the keys are adequately protected. The evaluator shall ensure that the documentation includes both an 

essay and one or more diagrams. Note that this may also be documented as separate proprietary evidence rather 

than being included in the TSS. 

Section 6.2 of the ST states the TOE protects the integrity of all DEKs and KEKs (including LTTCKM keys) stored in 

Flash by using authenticated encryption/decryption methods (CCM, GCM). 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 74 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

2.2.26 TLS PROTOCOL  (PKGTLS11:FCS_TLS_EXT.1) 

 

2.2.26.1 PKGTLS11:FCS_TLS_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: The evaluator shall ensure that the selections indicated in the ST are consistent 

with selections in the dependent components. 

Section 5 of the ST contains TLS sections are consistent with selections in the dependent components. 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.2.27 TLS CLIENT PROTOCOL  (PKGTLS11:FCS_TLSC_EXT.1) 

 

2.2.27.1 PKGTLS11:FCS_TLSC_EXT.1.1 

TSS Assurance Activities: The evaluator shall check the description of the implementation of this protocol in the 

TSS to ensure that the cipher suites supported are specified. The evaluator shall check the TSS to ensure that the 

cipher suites specified include those listed for this component. 

The ST, section 6.2, references the SFR for the list of ciphersuites.  Since the TSS references the SFR, they are 

consistent. 

Guidance Assurance Activities: The evaluator shall also check the operational guidance to ensure that it contains 

instructions on configuring the product so that TLS conforms to the description in the TSS. 

No configuration is necessary to use the claimed ciphersuites. 

Testing Assurance Activities: The evaluator shall also perform the following tests: 

Test 1: The evaluator shall establish a TLS connection using each of the cipher suites specified by the requirement. 

This connection may be established as part of the establishment of a higher-level protocol, e.g., as part of an EAP 

session. It is sufficient to observe the successful negotiation of a cipher suite to satisfy the intent of the test; it is 

not necessary to examine the characteristics of the encrypted traffic in an attempt to discern the cipher suite being 

used (for example, that the cryptographic algorithm is 128-bit AES and not 256-bit AES). 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 75 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 2: The goal of the following test is to verify that the TOE accepts only certificates with appropriate values in 

the extendedKeyUsage extension, and implicitly that the TOE correctly parses the extendedKeyUsage extension as 

part of X.509v3 server certificate validation. The evaluator shall attempt to establish the connection using a server 

with a server certificate that contains the Server Authentication purpose in the extendedKeyUsage extension and 

verify that a connection is established. The evaluator shall repeat this test using a different, but otherwise valid 

and trusted, certificate that lacks the Server Authentication purpose in the extendedKeyUsage extension and 

ensure that a connection is not established. Ideally, the two certificates should be similar in structure, the types of 

identifiers used, and the chain of trust. 

Test 3: The evaluator shall send a server certificate in the TLS connection that does not match the server-selected 

cipher suite (for example, send a ECDSA certificate while using the TLS_RSA_WITH_AES_128_CBC_SHA cipher suite 

or send a RSA certificate while using one of the ECDSA cipher suites.) The evaluator shall verify that the product 

disconnects after receiving the server's Certificate handshake message. 

Test 4: The evaluator shall configure the server to select the TLS_NULL_WITH_NULL_NULL cipher suite and verify 

that the client denies the connection. 

Test 5: The evaluator shall perform the following modifications to the traffic: 

Test 5.1: Change the TLS version selected by the server in the Server Hello to an undefined TLS version (for 

example 1.5 represented by the two bytes 03 06) and verify that the client rejects the connection. 

Test 5.2: Change the TLS version selected by the server in the Server Hello to the most recent unsupported TLS 

version (for example 1.1 represented by the two bytes 03 02) and verify that the client rejects the connection. 

Test 5.3: [conditional] If DHE or ECDHE cipher suites are supported, modify at least one byte in the server's nonce 

in the Server Hello handshake message, and verify that the client does not complete the handshake and no 

application data flows. 

Test 5.4: Modify the server's selected cipher suite in the Server Hello handshake message to be a cipher suite not 

presented in the Client Hello handshake message. The evaluator shall verify that the client does not complete the 

handshake and no application data flows. 

Test 5.5: [conditional] If DHE or ECDHE cipher suites are supported, modify the signature block in the server's Key 

Exchange handshake message, and verify that the client does not complete the handshake and no application data 

flows. This test does not apply to cipher suites using RSA key exchange. If a TOE only supports RSA key exchange in 

conjunction with TLS, then this test shall be omitted. 

Test 5.6: Modify a byte in the Server Finished handshake message, and verify that the client does not complete the 

handshake and no application data flows. 

Test 5.7: Send a message consisting of random bytes from the server after the server has issued the Change Cipher 

Spec message and verify that the client does not complete the handshake and no application data flows. The 

message must still have a valid 5-byte record header in order to ensure the message will be parsed as TLS. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 76 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

These tests are repeated for HTTPS and TLS. 

Test 1: The evaluator established a TLS session using the interfaces stated above for each of the claimed 

ciphersuites in turn.  The evaluator used a network sniffer to capture the TLS session negotiation and observed 

that the expected TLS cipher is negotiated. 

Test 2: The evaluator established a TLS session using the interfaces stated above.  The evaluator configured the 

server to send a certificate with the Server Authentication purpose in the extendedKeyUsage field.  Using a 

network sniffer the evaluator captured the TLS session negotiation and observed that the TLS session was 

successfully negotiated. The evaluator reconfigured the test server to retry the TLS session using a certificate that 

is missing the Server Authentication purpose in the extendedKeyUsage field.  Using a network sniffer the evaluator 

captured the TLS session negotiation and observed that the TLS session is not successfully negotiated. 

Test 3:  The evaluator established a TLS session using the interfaces stated above.  A modified test server 

negotiates an ECDSA ciphersuite, but returns an RSA certificate. Using a network sniffer to capture the TLS session 

negotiation and observed that the TLS session is not negotiated successfully. 

Test 4:  The evaluator configured a test server to accept only the TLS_NULL_WITH_NUL_NULL ciphersuite.  The 

evaluator then attempted to establish a TLS session using the interfaces stated above to that test server.  Using a 

network sniffer the evaluator captured the TLS session negotiation and observed that the TLS session is not 

successfully negotiated. 

Test 5: The evaluator obtained a packet captures of the TLS session negotiation using the interfaces stated above 

and a test server with Mutual Authentication configured on the test server.  The evaluator made connection 

attempts from the client to the test server.  The server implementation of the TLS protocol was modified as stated 

in the 7 scenarios described by the Assurance Activity.  The evaluator inspected each packet captures to ensure 

that the connections are rejected for each scenario. 

 

2.2.27.2 PKGTLS11:FCS_TLSC_EXT.1.2 

TSS Assurance Activities: The evaluator shall ensure that the TSS describes the client's method of establishing all 

reference identifiers from the application-configured reference identifier, including which types of reference 

identifiers are supported (e.g. Common Name, DNS Name, URI Name, Service Name, or other application-specific 

Subject Alternative Names) and whether IP addresses and wildcards are supported. The evaluator shall ensure that 

this description identifies whether and the manner in which certificate pinning is supported or used by the 

product. 

Section 6.2 of the ST states that when an application uses the combined APIs provided in the Admin Guide to 

attempt to establish a trusted channel connection based on TLS or HTTPS, the TOE supports only Subject 

Alternative Name (SAN) (DNS and IP address) as reference identifiers (the TOE does not accept reference 

identifiers in the Common Name[CN]). The TOE supports client (mutual) authentication (only a certificate is 

required to provide support for mutual authentication). While the TOE supports the use of wildcards in X.509 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 77 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

reference identifiers (SAN only), the TOE does not support certificate pinning. If the TOE cannot determine the 

revocation status of a peer certificate, the TOE rejects the certificate and rejects the connection. 

Guidance Assurance Activities: The evaluator shall verify that the AGD guidance includes instructions for setting 

the reference identifier to be used for the purposes of certificate validation in TLS. 

Section 10.3 (Certificate Validation, TLS, HTTPS, and Bluetooth) in the Admin Guide describes the TLS versions and 

ciphersuites that the TOE supports consistent with those identified in the requirements. It states, that by default, 

the device is restricted to only support TLS ciphersuites that are RFC compliant and claimed under the MDFPP. As 

such, no configuration is needed to restrict or allow ciphersuites to be compliant. It also provides the API used by 

applications for configuring the reference identifier. 

Testing Assurance Activities: The evaluator shall configure the reference identifier according to the AGD guidance 

and perform the following tests during a TLS connection. If the TOE supports certificate pinning, all pinned 

certificates must be removed before performing Tests 1 through 6. A pinned certificate must be added prior to 

performing Test 7. (TD0499 applied) 

Test 1: The evaluator shall present a server certificate that contains a CN that does not match the reference 

identifier and does not contain the SAN extension. The evaluator shall verify that the connection fails. Note that 

some systems might require the presence of the SAN extension. In this case the connection would still fail but for 

the reason of the missing SAN extension instead of the mismatch of CN and reference identifier. Both reasons are 

acceptable to pass Test 1. 

Test 2: The evaluator shall present a server certificate that contains a CN that matches the reference identifier, 

contains the SAN extension, but does not contain an identifier in the SAN that matches the reference identifier. 

The evaluator shall verify that the connection fails. The evaluator shall repeat this test for each supported SAN 

type. 

Test 3: [conditional] If the TOE does not mandate the presence of the SAN extension, the evaluator shall present a 

server certificate that contains a CN that matches the reference identifier and does not contain the SAN extension. 

The evaluator shall verify that the connection succeeds. If the TOE does mandate the presence of the SAN 

extension, this Test shall be omitted. 

Test 4: The evaluator shall present a server certificate that contains a CN that does not match the reference 

identifier but does contain an identifier in the SAN that matches. The evaluator shall verify that the connection 

succeeds. 

Test 5: The evaluator shall perform the following wildcard tests with each supported type of reference identifier. 

The support for wildcards is intended to be optional. If wildcards are supported, the first, second, and third tests 

below shall be executed. If wildcards are not supported, then the fourth test below shall be executed. 

Test 5.1: [conditional]: If wildcards are supported, the evaluator shall present a server certificate containing a 

wildcard that is not in the left-most label of the presented identifier (e.g. foo.*.example.com) and verify that the 

connection fails. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 78 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 5.2: [conditional]: If wildcards are supported, the evaluator shall present a server certificate containing a 

wildcard in the left-most label but not preceding the public suffix (e.g. *.example.com). The evaluator shall 

configure the reference identifier with a single left-most label (e.g. foo.example.com) and verify that the 

connection succeeds. The evaluator shall configure the reference identifier without a left-most label as in the 

certificate (e.g. example.com) and verify that the connection fails. The evaluator shall configure the reference 

identifier with two left-most labels (e.g. bar.foo.example.come) and verify that the connection fails. 

Test 5.3: [conditional]: If wildcards are supported, the evaluator shall present a server certificate containing a 

wildcard in the left-most label immediately preceding the public suffix (e.g. *.com). The evaluator shall configure 

the reference identifier with a single left-most label (e.g. foo.com) and verify that the connection fails. The 

evaluator shall configure the reference identifier with two left-most labels (e.g. bar.foo.com) and verify that the 

connection fails. 

Test 5.4: [conditional]: If wildcards are not supported, the evaluator shall present a server certificate containing a 

wildcard in the left-most label (e.g. *.example.com). The evaluator shall configure the reference identifier with a 

single left-most label (e.g. foo.example.com) and verify that the connection fails. 

Test 6: [conditional] If URI or Service name reference identifiers are supported, the evaluator shall configure the 

DNS name and the service identifier. The evaluator shall present a server certificate containing the correct DNS 

name and service identifier in the URIName or SRVName fields of the SAN and verify that the connection succeeds. 

The evaluator shall repeat this test with the wrong service identifier (but correct DNS name) and verify that the 

connection fails. 

Test 7: [conditional] If pinned certificates are supported the evaluator shall present a certificate that does not 

match the pinned certificate and verify that the connection fails. 

These tests are repeated for HTTPS and TLS. 

Test 1:  The evaluator attempted a connection with a valid CN and SAN and the connection was accepted. The 

evaluator attempted to connect to a server with a bad CN and no SAN.  The connection was rejected. 

Test 2:  The evaluator attempted to connect to a server with a server certificate that contains a CN that matches 

the reference identifier and contains a bad SAN extension. The connection was rejected. 

Test 3:  The evaluator attempted to connect to a server with a server certificate that contains a CN that matches 

the reference identifier and does not contain the SAN extension. The connection was rejected as expected because 

the TOE requires SAN always. 

Test 4: The evaluator attempted to connect to a server with a server certificate that contains a CN that does not 

match the reference identifier but does contain an identifier in the SAN that matches.  The connection succeeded. 

Test 5:  The evaluator attempted to connect to a server with a server certificate that contains various wildcard 

combinations. The connections were rejected. 

Test 6: The TOE does not support the optional URI or Service Name used as reference identifiers. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 79 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 7: Not applicable, the TOE does not support pinned certificates. 

 

2.2.27.3 PKGTLS11:FCS_TLSC_EXT.1.3 

TSS Assurance Activities: If the selection for authorizing override of invalid certificates is made, then the evaluator 

shall ensure that the TSS includes a description of how and when user or administrator authorization is obtained. 

The evaluator shall also ensure that the TSS describes any mechanism for storing such authorizations, such that 

future presentation of such otherwise-invalid certificates permits establishment of a trusted channel without user 

or administrator action. 

The selection for override was not made. 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: The evaluator shall demonstrate that using an invalid certificate results in the 

function failing as follows, unless excepted: 

Test 1a: The evaluator shall demonstrate that a server using a certificate with a valid certification path successfully 

connects. 

Test 1b: The evaluator shall modify the certificate chain used by the server in test 1a to be invalid and demonstrate 

that a server using a certificate without a valid certification path to a trust store element of the TOE results in an 

authentication failure. 

Test 1c [conditional]: If the TOE trust store can be managed, the evaluator shall modify the trust store element 

used in Test 1a to be untrusted and demonstrate that a connection attempt from the same server used in Test 1a 

results in an authentication failure. 

(TD0513 applied) 

Test 2: The evaluator shall demonstrate that a server using a certificate which has been revoked results in an 

authentication failure. 

Test 3: The evaluator shall demonstrate that a server using a certificate which has passed its expiration date results 

in an authentication failure. 

Test 4: The evaluator shall demonstrate that a server using a certificate which does not have a valid identifier 

results in an authentication failure. 

Test 1: This test has been performed in FIA_X509_EXT.1 test case 60 where complete and incomplete certificate 

chains are tested. 

Test 2: This test has been performed in FIA_X509_EXT.1 test case 62. 

Test 3: This test has been performed in FIA_X509_EXT.1 test case 61. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 80 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 4: This test has been performed in FCS_TLSC_EXT.1.2 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.2.28 TLS CLIENT PROTOCOL (EAP-TLS FOR WLAN)  

(WLANC10:FCS_TLSC_EXT.1/WLAN) 

 

2.2.28.1 WLANC10:FCS_TLSC_EXT.1.1/WLAN 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.2.28.2 WLANC10:FCS_TLSC_EXT.1.2/WLAN 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.2.28.3 WLANC10:FCS_TLSC_EXT.1.3/WLAN 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.2.28.4 WLANC10:FCS_TLSC_EXT.1.4/WLAN 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 81 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Testing Assurance Activities: None Defined 

 

2.2.28.5 WLANC10:FCS_TLSC_EXT.1.5/WLAN 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall check the description of the implementation of this 

protocol in the TSS to ensure that the cipher suites supported are specified. The evaluator shall check the TSS to 

ensure that the cipher suites specified include those listed for this component. 

Section 6.2 (WLANC10:FCS_TLSC_EXT.1/2/WLAN) in the ST states that the TSF supports TLS versions 1.1, and 1.2 

and also supports the selected ciphersuites utilizing SHA-1, SHA-256, and SHA-384 (see the selections in section 5 

for FCS_TLSC_EXT.1/WLAN) for use with EAP-TLS as part of WPA2/WPA3. The TOE in its evaluated configuration 

and, by design, supports only evaluated elliptic curves (P-256 & P-384 and no others) and has a fixed set of 

supported curves (thus the admin cannot and need not configure any curves). 

Component Guidance Assurance Activities: The evaluator shall check the operational guidance to ensure that it 

contains instructions on configuring the TOE so that TLS conforms to the description in the TSS (for instance, the 

set of cipher suites advertised by the TOE may have to be restricted to meet the requirements). 

The evaluator shall check that the guidance contains instructions for the administrator to configure the list of 

Certificate Authorities that are allowed to sign certificates used by the authentication server that will be accepted 

by the TOE in the EAP-TLS exchange, and instructions on how to specify the algorithm suites that will be proposed 

and accepted by the TOE during the EAP-TLS exchange. 

The table entry “Certificate Management” in Section 3.6 (Common Criteria Related Settings) of the Admin Guide 

explains how to import and remove certificates. The table entry “Wi-Fi Settings” in Section 3.6 explains how to 

configure certificates for Wi-Fi access. 

Section 10.3 (Certificate Validation, TLS, HTTPS, and Bluetooth) in the Admin Guide describes the TLS versions and 

ciphersuites that the TOE supports consistent with those identified in the requirements. It states, that by default, 

the device is restricted to only support TLS ciphersuites that are RFC compliant and claimed under the MDFPP. As 

such, no configuration is needed to restrict or allow ciphersuites to be compliant. 

Component Testing Assurance Activities: The evaluator shall write, or the TOE developer shall provide, an 

application for the purposes of testing TLS. 

The evaluator shall perform the following tests: 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 82 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 1: The evaluator shall establish a TLS connection using each of the cipher suites specified by the requirement. 

This connection may be established as part of the establishment of a higher-level protocol, e.g., as part of an EAP 

session. It is sufficient to observe the successful negotiation of a cipher suite to satisfy the intent of the test; it is 

not necessary to examine the characteristics of the encrypted traffic in an attempt to discern the cipher suite being 

used (for example, that the cryptographic algorithm is 128-bit AES and not 256-bit AES). 

Test 2: The evaluator shall attempt to establish the connection using a server with a server certificate that contains 

the Server Authentication purpose in the extendedKeyUsage field and verify that a connection is established. The 

evaluator will then verify that the client rejects an otherwise valid server certificate that lacks the Server 

Authentication purpose in the extendedKeyUsage field and a connection is not established. Ideally, the two 

certificates should be identical except for the extendedKeyUsage field. 

Test 3: The evaluator shall send a server certificate in the TLS connection that does not match the server-selected 

cipher suite. For example, send a ECDSA certificate while using the TLS_RSA_WITH_AES_128_CBC_SHA cipher suite 

or send a RSA certificate while using one of the ECDSA cipher suites. The evaluator shall verify that the TOE 

disconnects after receiving the server's Certificate handshake message. 

Test 4: The evaluator shall configure the server to select the TLS_NULL_WITH_NULL_NULL cipher suite and verify 

that the client denies the connection. 

Test 5: The evaluator shall perform the following modifications to the traffic: 

- Change the TLS version selected by the server in the Server Hello to a unsupported TLS version (for example 1.5 

represented by the two bytes 03 06) and verify that the client rejects the connection.  

- Modify at least one byte in the server's nonce in the Server Hello handshake message, and verify that the client 

rejects the Server Key Exchange handshake message (if using a DHE or ECDHE cipher suite) or that the server 

denies the client's Finished handshake message.  

- Modify the server's selected cipher suite in the Server Hello handshake message to be a cipher suite not 

presented in the Client Hello handshake message. The evaluator shall verify that the client rejects the connection 

after receiving the Server Hello. 

- [conditional: if the TOE supports at least one cipher suite that uses DHE or ECDHE for key exchange] Modify the 

signature block in the Server's Key Exchange handshake message, and verify that the client rejects the connection 

after receiving the Server Key Exchange message. This test does not apply to cipher suites using RSA key exchange.  

- Modify a byte in the Server Finished handshake message, and verify that the client sends an Encrypted Message 

followed by a FIN and ACK message. This is sufficient to deduce that the TOE responded with a Fatal Alert and no 

further data would be sent. 

- Send a garbled message from the server after the server has issued the ChangeCipherSpec message and verify 

that the client denies the connection. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 83 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 1 – The evaluator established a connection with each ciphersuite specified in the ST. The evaluator verified the 

correctness of the ciphersuite using the server logging options (the evaluator has a packet capture as well). 

Test 2 – The evaluator configured an Access Point to use an Authentication Server for EAP-TLS authentication. The 

evaluator used a known good certificate that included the extendedKeyUsage field and verified the connection was 

accepted.  The evaluator then created a server certificate without the Server Authentication purpose in the 

extendedKeyUsage field and verified the connection was rejected. 

Test 3 – The evaluator configured an Access Point to use an Authentication Server for EAP-TLS authentication.  The 

evaluator then attempted to use an RSA certificate while using an ECDSA ciphersuite. The connection was 

disconnected. 

Test 4 - The evaluator configured an Access Point to use EAP-TLS authentication. The evaluator then attempted to 

require the TLS_NULL_WITH_NULL_NULL ciphersuite. That attempt was rejected by the client. 

Test 5 – The evaluator configured an Access Point for EAP-TLS authentication. The evaluator then created packets 

that modified each of the required options.  In all cases the connection was denied as expected. 

 

2.2.29 TLS CLIENT SUPPORT FOR MUTUAL AUTHENTICATION  

(PKGTLS11:FCS_TLSC_EXT.2) 

 

2.2.29.1 PKGTLS11:FCS_TLSC_EXT.2.1 

TSS Assurance Activities: The evaluator shall ensure that the TSS description required per FIA_X509_EXT.2.1 

includes the use of client-side certificates for TLS mutual authentication. The evaluator shall also ensure that the 

TSS describes any factors beyond configuration that are necessary in order for the client to engage in mutual 

authentication using X.509v3 certificates. 

Section 6.2 of the ST states the TOE supports client (mutual) authentication (only a certificate is required to 

provide support for mutual authentication). 

Guidance Assurance Activities: The evaluator shall ensure that the AGD guidance includes any instructions 

necessary to configure the TOE to perform mutual authentication. The evaluator also shall verify that the AGD 

guidance required per FIA_X509_EXT.2.1 includes instructions for configuring the client-side certificates for TLS 

mutual authentication. 

The table entry “Certificate Management” in Section 3.6 (Common Criteria Related Settings) of the Admin Guide 

explains how to import and remove certificates. The table entry “Wi-Fi Settings” in Section 3.6 explains how to 

configure certificates for Wi-Fi access 

Testing Assurance Activities: The evaluator shall also perform the following tests: 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 84 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 1: The evaluator shall establish a connection to a server that is not configured for mutual authentication (i.e. 

does not send Server's Certificate Request (type 13) message). The evaluator observes negotiation of a TLS channel 

and confirms that the TOE did not send Client's Certificate message (type 11) during handshake. 

Test 2: The evaluator shall establish a connection to a server with a shared trusted root that is configured for 

mutual authentication (i.e. it sends Server's Certificate Request (type 13) message). The evaluator observes 

negotiation of a TLS channel and confirms that the TOE responds with a non-empty Client's Certificate message 

(type 11) and Certificate Verify (type 15) message. 

This test is repeated for TLS and HTTPS. 

Test 1: The evaluator established a TLS session using a test server that was not configured for mutual 

authentication. The evaluator observed that the TLS connection was successful and the TOE did not send a 

certificate or a certificate verify message. 

Test 2: The evaluator established a TLS session using a test server that was configured for mutual authentication. 

The evaluator observed that the TLS connection was successful and the TOE did send both a certificate and a 

certificate verify message. 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.2.30 TLS CLIENT SUPPORT FOR SUPPORTED GROUPS EXTENSION (EAP-TLS FOR 

WLAN)  (WLANC10:FCS_TLSC_EXT.2/WLAN) 

 

2.2.30.1 WLANC10:FCS_TLSC_EXT.2.1/WLAN 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall verify that the TSS describes the Supported Groups 

extension and whether the required behavior is performed by default or may be configured. 

Section 6.2 of the ST states that the TOE in its evaluated configuration and by design, supports only evaluated 

elliptic curves for TLS (P-256 and P-384) and has a fixed set of supported curves (thus there is no admin 

configuration required). 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 85 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Component Guidance Assurance Activities: If the TSS indicates that the Supported Groups extension must be 

configured to meet the requirement, the evaluator shall verify that the operational guidance includes instructions 

for configuration of this extension. 

As indicated in Section 6.2 of the ST, no admin configuration is required for the curves. 

Component Testing Assurance Activities: The evaluator shall perform the following test: 

Test 1: The evaluator shall configure a server to perform ECDHE key exchange using each of the TOE's supported 

curves and shall verify that the TOE successfully connects to the server. 

Test 1- The evaluator configured the test server for each curve claimed by the ST. The client was able to establish a 

connection with each claimed curve. 

 

2.2.31 TLS CLIENT SUPPORT FOR RENEGOTIATION  (PKGTLS11:FCS_TLSC_EXT.4) 

 

2.2.31.1 PKGTLS11:FCS_TLSC_EXT.4.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: The evaluator shall perform the following tests: 

Test 1: The evaluator shall use a network packet analyzer/sniffer to capture the traffic between the two TLS 

endpoints. The evaluator shall verify that either the 'renegotiation_info' field or the SCSV cipher suite is included in 

the ClientHello message during the initial handshake. 

Test 2: The evaluator shall verify the Client's handling of ServerHello messages received during the initial 

handshake that include the 'renegotiation_info' extension. The evaluator shall modify the length portion of this 

field in the ServerHello message to be non-zero and verify that the client sends a failure and terminates the 

connection. The evaluator shall verify that a properly formatted field results in a successful TLS connection. 

Test 3: The evaluator shall verify that ServerHello messages received during secure renegotiation contain the 

'renegotiation_info' extension. The evaluator shall modify either the 'client_verify_data' or 'server_verify_data' 

value and verify that the client terminates the connection. 

Test 1 – The evaluator configured the TOE to connect to a test server using TLS. The evaluator configured the 

server to connect normally with renegotiation.  The evaluator observed the 'renegotiation_info' field in the 

handshake as expected. 

Test 2 - The evaluator configured the TOE to connect to a test server using TLS. The evaluator configured the server 

to connect normally with renegotiation. The evaluator modified the length field of the ServerHello to be non-zero 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 86 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

and the connection failed.  The evaluator tested with an unmodified connection and the TOE connected as 

expected. 

Test 3 - The evaluator configured the TOE to connect to a test server using TLS. The evaluator configured the server 

to connect normally with renegotiation. The evaluator modified server_verify_data field and the connection failed.  

The evaluator tested with an unmodified connection and the TOE connected as expected. 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.2.32 TLS CLIENT SUPPORT FOR SUPPORTED GROUPS EXTENSION  

(PKGTLS11:FCS_TLSC_EXT.5) 

 

2.2.32.1 PKGTLS11:FCS_TLSC_EXT.5.1 

TSS Assurance Activities: The evaluator shall verify that TSS describes the Supported Groups Extension. 

Section 6.2 of the ST explains the TOE in its evaluated configuration and, by design, supports elliptic curves for TLS 

(P-256 and P-384) and has a fixed set of supported curves (thus the admin cannot and need not configure any 

curves). 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: The evaluator shall also perform the following test: 

Test 1: The evaluator shall configure a server to perform key exchange using each of the TOE's supported curves 

and/or groups. The evaluator shall verify that the TOE successfully connects to the server. 

Test 1- The evaluator configured the test server for each curve claimed by the ST. The client was able to establish a 

connection with each claimed curve. 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.2.33 SUPPORTED WPA VERSIONS - PER TD0710  (WLANC10:FCS_WPA_EXT.1) 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 87 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

 

2.2.33.1 WLANC10:FCS_WPA_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: The evaluator shall ensure that the AGD contains guidance on how to 

configure the WLAN client to connect to networks supporting WPA3 and, if selected, WPA2. (TD0710 applied) 

The table in Section 3.6 of the Admin Guide provides the Common Criteria Related Settings.   The Wi-Fi Settings 

entry in the table includes the API for configuring the security policy for each wireless network including setting 

the WLAN CA certificate, specifying the security type, selecting the authentication protocol and selecting the client 

credentials. 

Component Testing Assurance Activities: The evaluator shall configure a Wi-Fi network that utilizes WPA3 and 

verify that the client can connect. The same test shall be repeated for WPA2 if it is selected. (TD0710 applied) 

Test - The evaluator configured a Wi-Fi network to use WPA3 and demonstrated the TOE can connect. The 

evaluator repeated the test for WPA2 

2.3 USER DATA PROTECTION (FDP) 

 

2.3.1 ACCESS CONTROL FOR SYSTEM SERVICES  (MDFPP33:FDP_ACF_EXT.1) 

 

2.3.1.1 MDFPP33:FDP_ACF_EXT.1.1 

TSS Assurance Activities: The evaluator shall ensure the TSS lists all system services available for use by an 

application. The evaluator shall also ensure that the TSS describes how applications interface with these system 

services, and means by which these system services are protected by the TSF. 

The TSS shall describe which of the following categories each system service falls in: 

1. No applications are allowed access 

2. Privileged applications are allowed access 

3. Applications are allowed access by user authorization 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 88 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

4. All applications are allowed access 

Privileged applications include any applications developed by the TSF developer. The TSS shall describe how 

privileges are granted to third-party applications. For both types of privileged applications, the TSS shall describe 

how and when the privileges are verified and how the TSF prevents unprivileged applications from accessing those 

services. 

For any services for which the user may grant access, the evaluator shall ensure that the TSS identifies whether the 

user is prompted for authorization when the application is installed, or during runtime. The evaluator shall ensure 

that the operational user guidance contains instructions for restricting application access to system services. 

Section 6.3 of the ST states that the TOE provides a mechanism based on the use of assigned permissions to specify 

the level of access any application may have to any system service. A system service may have multiple permissions 

associated with it, depending on the functionality of the service (for example read and write access may be separate 

controls on one service while both may be combined into a single control on another service). When an application 

wants to access the system service in question, the calling application must be granted access to the permission by 

the user.  

Some permissions are granted automatically for applications that are installed by Google (these are only for Google 

applications and are not provided for any third party applications) while all the user of the device must authorize 

other permissions. Applications using API Level 23 (Android 6.0) or higher (the current API Level is 33) will prompt 

the user to grant the permission the first time the permission is requested by the application. Applications written 

to older API Levels will prompt the user for all permissions the first time the application runs. If the user has approved 

the permission persistently, it will be allowed every time the application runs, but if the user only approved the 

permission for one time use, the user will be prompted to approve access every time the permission is requested by 

the application. 

Permissions in API Level 33 are assigned a protectionLevel based on the implied potential risk to accessing data 

protected by the permission. The protectionLevel is divided into two types: base permissions and protection flags. 

Base permissions are associated with the level of risk while the flags are modifiers that may provide context or 

refinement of the base permission. 

The TOE provides the following base permissions to applications (for API Level 34): 

1. Normal - A lower-risk permission that gives an application access to isolated application-level features, with 

minimal risk to other applications, the system, or the user. The system automatically grants this type of 

permission to a requesting application at installation, without asking for the user's explicit approval (though 

the user always has the option to review these permissions before installing). 

2. Dangerous - A higher-risk permission that would give a requesting application access to private user data 

or control over the device that can negatively impact the user. Because this type of permission introduces 

potential risk, the system cannot automatically grant it to the requesting application. For example, any 

dangerous permissions requested by an application will be displayed to the user and require confirmation 

before proceeding, or some other approach can be taken to avoid the user automatically allowing the use 

https://developer.android.com/reference/android/R.attr#protectionLevel


 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 89 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

of such facilities. 

3. Signature - A permission that the system is to grant only if the requesting application is signed with the 

same certificate as the application that declared the permission. If the certificates match, the system 

automatically grants the permission without notifying the user or asking for the user's explicit approval. 

4. Internal - a permission that is managed internally by the system and only granted according to the 

protection flags. 

An example of a normal permission is the ability to vibrate the device: android.permission.VIBRATE. This permission 

allows an application to make the device vibrate, and an application that does not request (or declare) this 

permission would have its vibration requests ignored. 

An example of a dangerous privilege would be access to location services to determine the location of the mobile 

device: android.permission.ACCESS_FINE_LOCATION. The TOE controls access to Dangerous permissions during the 

running of the application. The TOE prompts the user to review the application’s requested permissions (by 

displaying a description of each permission group, into which individual permissions map, that an application 

requested access to). If the user approves, then the application is allowed to continue running. If the user 

disapproves, the device continues to run, but cannot use the services protected by the denied permissions. 

Thereafter, the mobile device grants that application during execution access to the set of permissions declared in 

its Manifest file. 

An example of a signature permission is the android.permission.BIND_VPN_SERVICE that an application must 

declare in order to utilize the VpnService APIs of the device. Because the permission is a Signature permission, the 

mobile device only grants this permission to an application (2nd installed app) that requests this permission and that 

has been signed with the same developer key used to sign the application (1st installed app) declaring the permission 

(in the case of the example, the Android Framework itself). 

An example of an internal permission is the android.permission.SET_DEFAULT_ACCOUNT_FOR_CONTACTS, which is 

only granted to system applications fulfilling the Contacts app role to allow the default account for new contacts to 

be set. 

Additionally, Android includes the following flags that layer atop the base categories. 

1. privileged - this permission can also be granted to any applications installed as privileged apps on the system 
image. Please avoid using this option, as the signature protection level should be sufficient for most needs 
and works regardless of exactly where applications are installed. This permission flag is used for certain 
special situations where multiple vendors have applications built in to a system image which need to share 
specific features explicitly because they are being built together. 

2. system - Old synonym for 'privileged'. 

3. development - this permission can also (optionally) be granted to development applications (e.g., to allow 
additional location reporting during beta testing). 

4. appop - this permission is closely associated with an app op for controlling access. 

5. pre23 - this permission can be automatically granted to apps that target API levels below API level 23 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 90 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

(Marshmallow/6.0). 

6. installer - this permission can be automatically granted to system apps that install packages. 

7. verifier - this permission can be automatically granted to system apps that verify packages. 

8. preinstalled - this permission can be automatically granted to any application pre-installed on the system 
image (not just privileged apps) (the TOE does not prompt the user to approve the permission). 

The Android 13 (Level 33) API (details found here https://developer.android.com/reference/packages) provides 

services to mobile applications. 

While Android provides a large number of individual permissions, they are grouped into categories or features that 

provide similar functionality for the simplicity of the user interaction. These groupings do not affect the permissions 

themselves; it is only a way to group them together for the user presentation. Table 6 shows a series of functional 

categories centered on common functionality. The KMD contains a listing of each Android permission and its 

associated base permission. 

Service Features Description 

Sensitive I/O Devices & Sensors Location services, Audio & Video capture, Body sensors 

User Personal Information & Credentials Contacts, Calendar, Call logs, SMS 

Metadata & Device ID Information IMEI, Phone Number 

Data Storage Protection App data, App cache 

System Settings & Application Management 
Date time, Reboot/Shutdown, Sleep, Force-close 
application, Administrator Enrollment 

Wi-Fi, Bluetooth, USB Access Wi-Fi, Bluetooth, USB tethering, debugging and file transfer 

Mobile Device Management & Administration MDM APIs 

Peripheral Hardware NFC, Camera, Headphones 

Security & Encryption Certificate/Key Management, Password, Revocation rules 

Table 6 - Functional Categories 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: Evaluation Activity Note: The following tests require the vendor to provide access to 

a test platform that provides the evaluator with tools that are typically not found on consumer Mobile Device 

products. 

The evaluator shall write, or the developer shall provide, applications for the purposes of the following tests. 

Test 32: For each system service to which no applications are allowed access, the evaluator shall attempt to access 

the system service with a test application and verify that the application is not able to access that system service. 

Test 33: For each system service to which only privileged applications are allowed access, the evaluator shall 

attempt to access the system service with an unprivileged application and verify that the application is not able to 

access that system service. The evaluator shall attempt to access the system service with a privileged application 

and verify that the application can access the service. 

https://developer.android.com/reference/packages


 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 91 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 34: For each system service to which the user may grant access, the evaluator shall attempt to access the 

system service with a test application. The evaluator shall ensure that either the system blocks such accesses or 

prompts for user authorization. The prompt for user authorization may occur at runtime or at installation time, 

and should be consistent with the behavior described in the TSS. 

Test 35: For each system service listed in the TSS that is accessible by all applications, the evaluator shall test that 

an application can access that system service. 

Test 32:  The access control in the TOE is based on Android permissions. There are no system services to which no 

applications are allowed access.   

Test 33 - In order to test the permissions, the vendor provided two versions of the same test application, one 

signed with a trusted platform certificate, and the second signed with an untrusted developer certificate.  The 

evaluator ran each application attempting to access the APIs protected by those permissions. The evaluator 

verified that the developer signed application output showed that the TOE correctly rejected access to the 

privileged permissions and protected APIs.  The evaluator verified that the platform signed application output 

showed that the TOE correctly granted access to the privileged permissions and protected APIs.  

Test 34 – The evaluator used an application that declared all Dangerous level permissions in the manifest file.  The 

evaluator executed the application and confirmed that the TOE behaved correctly.  Where the logs noted that the 

user had not explicitly granted the Dangerous permission, the test application’s attempt to call the API failed.  The 

evaluator ran this test again and simulated the user explicitly granting authorization and confirmed that the TOE 

behaved correctly.  The logs showed that because user authorization was explicitly granted for all Dangerous 

permissions, the test application’s attempt to call the APIs succeeded.  

Test 35 –The evaluator used an application that has all Dangerous and Normal level permissions declared in the 

application manifest.  No user approval was provided for Dangerous level permissions.  The TOE granted it access 

to the Normal APIs while correctly rejecting access to the Dangerous ones.   The evaluator used another test 

application that declared no permissions in its manifest file.  This application was not granted any Normal 

permission (nor any other permissions) and could not access any of the protected APIs. Through testing the 

permission access control, the evaluator found that the protected APIs could only be accessed when the associated 

permissions were granted by the TOE. 

 

2.3.1.2 MDFPP33:FDP_ACF_EXT.1.2 

TSS Assurance Activities: The evaluator shall examine the TSS to verify that it describes which data sharing is 

permitted between applications, which data sharing is not permitted, and how disallowed sharing is prevented. It 

is possible to select both 'applications' and 'groups of applications', in which case the TSS is expected to describe 

the data sharing policies that would be applied in each case. 

Section 6.3 of the ST states applications with a common developer have the ability to allow sharing of data 

between their applications. A common application developer can sign their generated APK with a common 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 92 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

certificate or key and set the permissions of their application to allow data sharing. When the different 

applications’ signatures match and the proper permissions are enabled, information can then be shared as needed. 

The TOE supports Enterprise profiles to provide additional separation between application and application data 

belonging to the Enterprise profile. Applications installed into the Enterprise versus Personal profiles cannot access 

each other’s secure data, applications, and can have separate device administrators/managers. This functionality is 

built into the device by default and does not require an application download. The Enterprise administrative app 

(an MDM agent application installed into the Enterprise Profile) may enable cross-profile contacts search, in which 

case, the device owner can search the address book of the enterprise profile. Please see the Admin Guide for 

additional details regarding how to set up and use Enterprise profiles. Ultimately, the enterprise profile is under 

control of the personal profile. The personal profile can decide to remove the enterprise profile, thus deleting all 

information and applications stored within the enterprise profile. However, despite the “control” of the personal 

profile, the personal profile cannot dictate the enterprise profile to share applications or data with the personal 

profile; the enterprise profile MDM must allow for sharing of contacts before any information can be shared. 

Section 6.3 in the ST states that the TOE allows an administrator to allow sharing of the enterprise profile contacts 

with the normal profile. 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: Test 36: The evaluator shall write, or the developer shall provide, two applications, 

one that saves data containing a unique string and the other, which attempts to access that data. If groups of 

applications is selected, the applications shall be placed into different groups. If application is selected, the 

evaluator shall install the two applications. If private is selected, the application shall not write to a designated 

shared storage area. The evaluator shall verify that the second application is unable to access the stored unique 

string. 

If the user is selected, the evaluator shall grant access as the user and verify that the second application is able to 

access the stored unique string. 

If the administrator is selected, the evaluator shall grant access as the administrator and verify that the second 

application is able to access the stored unique string. 

If a common application developer is selected, the evaluator shall grant access to an, application with a common 

application developer to the first, and verify that the application is able to access the stored unique string. 

Test 36 – The TSF provides two separate access control policies.  The first access control policy is specified on a 

per-app basis.  This allows applications to have their own individualized sandbox for storing all application data. 

The evaluator used a test application to write a known string to the application’s data directory and then used a 

second application to attempt to access this file. The TOE prohibited access and the application received a 

“Permission denied” error from the TOE.   Next the evaluator used a third application which had a (shared) UID 

matching that of the first test application and verified that this application could access the data in the 

application’s data directory created by the first test application.   



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 93 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The second access control policy is specified on the application group level.  The evaluator configured a Work 

Profile (a group of managed enterprise applications) on the TOE.  The evaluator used a test application installed in 

both the personal and Work profiles of the TOE.  The evaluator then created and read some known data in the 

personal profile and attempted to access it from the work profile and found that permission was denied.  The 

evaluator then created and read some known data in the work profile and attempted to access it from the 

personal profile and found that permission was denied. 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.3.2 ACCESS CONTROL FOR SYSTEM RESOURCES  (MDFPP33:FDP_ACF_EXT.2) 

 

2.3.2.1 MDFPP33:FDP_ACF_EXT.2.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: For each selected resource, the evaluator shall cause data to be placed 

into the Enterprise group's instance of that shared resource. The evaluator shall install an application into the 

Personal group that attempts to access the shared resource information and verify that it cannot access the 

information. 

Test – The evaluator used the contacts, calendar, and keychain for each application group (Personal and Work).  

For calendar and keychain, the TOE does not provide any mechanism to share data between different application 

groups and the evaluator confirmed that there was no data visible between the Personal and Work profiles.  For 

contacts, the evaluator first confirmed that the contacts in each profile were not visible to the other profile.   The 

evaluator then enabled contacts sharing between profiles and confirmed that the Personal profile could now view 

contacts in the Work profile.  Note this setting only allows sharing of the Work Profile information with the 

Personal profiles (not the other way around). 

 

2.3.3 PROTECTED DATA ENCRYPTION  (MDFPP33:FDP_DAR_EXT.1) 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 94 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

 

2.3.3.1 MDFPP33:FDP_DAR_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.3.3.2 MDFPP33:FDP_DAR_EXT.1.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall verify that the TSS section of the ST indicates which data 

is protected by the DAR implementation and what data is considered TSF data. The evaluator shall ensure that this 

data includes all protected data. 

Section 6.3 of the ST states the TOE provides Data-At-Rest AES-256 XTS hardware encryption for all data stored on 

the TOE in the user data partition (which includes both user data and TSF data). The TOE also has TSF data relating 

to key storage for TSF keys not stored in the system’s Android Key Store. The TOE separately encrypts those TSF keys 

and data. Additionally, the TOE includes read-only filesystems (system and vendor) in which the TOE’S system 

executables, libraries, and their configuration data reside.  

For its Data-At-Rest encryption of the data partition on the internal Flash (where the TOE stores all user data and 

all application data), the TOE uses an AES-256 bit DEK with XTS feedback mode to encrypt each file in the data 

partition using dedicated application processor hardware.  The TOE uses File Based Encryption (FBE) to encrypt 

files either using Device Encryption (DE) or Credential Encryption (CE), where the latter files the TOE combines a 

key chaining to the REK with the user’s password to derive the CE encryption keys. 

Component Guidance Assurance Activities: The evaluator shall review the AGD guidance to determine that the 

description of the configuration and use of the DAR protection does not require the user to perform any actions 

beyond configuration and providing the authentication credential. The evaluator shall also review the AGD 

guidance to determine that the configuration does not require the user to identify encryption on a per-file basis. 

Section 5.1.5.2 (MDFPP33:FMT_SMF.1.1) in the ST indicates that the TOE always encrypts its user data storage and 

that the device’s DAR protection cannot be disabled.    

Section 2.1 (Data Protection) in the Admin Guide describes the TOE’s file-based encryption method.  All encryption 

is based on AES-256 in XTS mode. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 95 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Component Testing Assurance Activities: Evaluation Activity Note: The following test requires the developer to 

provide access to a test platform that provides the evaluator with tools that are typically not found on consumer 

Mobile Device products. 

Test 37: The evaluator shall enable encryption according to the AGD guidance. The evaluator shall create user data 

(non-system) either by creating a file or by using an application. The evaluator shall use a tool provided by the 

developer to verify that this data is encrypted when the product is powered off, in conjunction with Test 1 for 

FIA_UAU_EXT.1. 

Test 37 – The evaluator used a userdebug version of the TOE to start an ADB shell, navigate to the directory of the 

filesystem and create a file.  The evaluator rebooted the phone to the initial lockscreen and then started a root 

shell and navigated to the same directory.  The evaluator found the directory and filenames were encrypted and 

unrecognizable. Similarly, the evaluator used a binary search tool to search the userdata partition for the string the 

evaluator wrote in the previously created file, but there were no matches. 

 

2.3.4 SENSITIVE DATA ENCRYPTION  (MDFPP33:FDP_DAR_EXT.2) 

 

2.3.4.1 MDFPP33:FDP_DAR_EXT.2.1 

TSS Assurance Activities: The evaluator shall verify that the TSS includes a description of which data stored by the 

TSF (such as by native applications) is treated as sensitive. This data may include all or some user or enterprise data 

and must be specific regarding the level of protection of email, contacts, calendar appointments, messages, and 

documents. 

The evaluator shall examine the TSS to determine that it describes the mechanism that is provided for applications 

to use to mark data and keys as sensitive. This description shall also contain information reflecting how data and 

keys marked in this manner are distinguished from data and keys that are not (for instance, tagging, segregation in 

a 'special' area of memory or container, etc.). 

Section 6.3 of the ST states that the vendor uses the NIAPSEC library (from Google) for Sensitive Data Protection 

(SDP) that application developers must use to opt-in for sensitive data protection. This library calls into the TOE to 

generate an RSA key that acts as a primary KEK for the SDP encryption process. When an application that has 

opted-in for SDP receives incoming data while the device is locked, an AES symmetric DEK is generated to encrypt 

that data. The public key from the primary RSA KEK is then used to encrypt the AES DEK. Once the device is 

unlocked, the RSA KEK private key is re-derived and can be used to decrypt the AES DEK for each piece of 

information that was stored while the device was locked. For performance reasons SDP-protected data is usually 

decrypted and re-encrypted according to FDP_DAR_EXT.1 at the next successful login and access of the 

application, though this is a choice of the application developer (who may have a reason to maintain the SDP-

status of the data). 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 96 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The keys for SDP are stored in the keystore (FCS_STG_EXT.1) with the settings setUnlockedDeviceRequired and 

setUserAuthenticationRequired to enable. These settings ensure that sensitive data cannot be unlocked except 

once the user is authenticated to the TOE. 

Application data marked as sensitive will have header information about how the data is encrypted that will 

specify whether the data can only be read through the NIAPSEC library (utilizing the appropriate primary SDP KEK). 

To the system as a whole, there is no difference between an SDP file and a non-SDP file to avoid calling out where 

sensitive data is located; this is specifically limited to the header data of the file which would mark how the DEK is 

encrypted. Application data is segregated from other applications as per FDP_ACF_EXT.1.2. 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: The evaluator shall enable encryption of sensitive data and require user 

authentication according to the AGD guidance. The evaluator shall try to access and create sensitive data (as 

defined in the ST and either by creating a file or using an application to generate sensitive data) in order to verify 

that no other user interaction is required. 

Test – The evaluator installed an application provided by the vendor that created a sensitive data repository.  The 

evaluator then used that application to create sensitive data and read the created data. 

 

2.3.4.2 MDFPP33:FDP_DAR_EXT.2.2 

TSS Assurance Activities: The evaluator shall review the TSS section of the ST to determine that the TSS includes a 

description of the process of receiving sensitive data while the device is in a locked state. The evaluator shall also 

verify that the description indicates if sensitive data that may be received in the locked state is treated differently 

than sensitive data that cannot be received in the locked state. The description shall include the key scheme for 

encrypting and storing the received data, which must involve an asymmetric key and must prevent the sensitive 

data-at-rest from being decrypted by wiping all key material used to derive or encrypt the data (as described in the 

application note). The introduction to this section provides two different schemes that meet the requirements, but 

other solutions may address this requirement. 

See MDFPP33:FDP_DAR_EXT.2.1. 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: The evaluator shall perform the tests in FCS_CKM_EXT.4 for all key material no longer 

needed while in the locked state and shall ensure that keys for the asymmetric scheme are addressed in the tests 

performed when transitioning to the locked state. 

Test – The evaluator performed this test in conjunction with FCS_CKM_EXT.4. The evaluator performed tests in 

FCS_CKM_EXT.4 Test 3 for all key material no longer needed while in the locked state and ensured that keys for 

the asymmetric scheme are addressed in the tests performed when transitioning to the locked state.  In this 

https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUnlockedDeviceRequired(boolean)
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUserAuthenticationRequired(boolean)


 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 97 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

referenced test, the evaluator used the application from FDP_DAR_EXT.2.1 Test to encrypt, decrypt, and dump key 

values that can be used for testing. 

 

2.3.4.3 MDFPP33:FDP_DAR_EXT.2.3 

TSS Assurance Activities: The evaluator shall verify that the key hierarchy section of the TSS required for 

FCS_STG_EXT.2.1 includes the symmetric encryption keys (DEKs) used to encrypt sensitive data. The evaluator shall 

ensure that these DEKs are encrypted by a key encrypted with (or chain to a KEK encrypted with) the REK and 

password-derived or biometric-unlocked KEK. 

The evaluator shall verify that the TSS section of the ST that describes the asymmetric key scheme includes the 

protection of any private keys of the asymmetric pairs. The evaluator shall ensure that any private keys that are 

not wiped and are stored by the TSF are stored encrypted by a key encrypted with (or chain to a KEK encrypted 

with) the REK and password-derived or biometric-unlocked KEK. 

The evaluator shall also ensure that the documentation of the product's encryption key management is detailed 

enough that, after reading, the product's key management hierarchy is clear and that it meets the requirements to 

ensure the keys are adequately protected. The evaluator shall ensure that the documentation includes both an 

essay and one or more diagrams. Note that this may also be documented as separate proprietary evidence rather 

than being included in the TSS. 

Section 6.2 (MDFPP33:FCS_STG_EXT.2) in the ST states that the TOE employs a key hierarchy that protects all DEKs 

and KEKs by encryption with either the REK or by the REK and password derived KEK. 

See also MDFPP33:FDP_DAR_EXT.2.1 for a description of keys for sensitive data protection. 

The KMD provides key diagrams and enough detail that the evaluator can conclude the key management hierarchy 

is clear and that it meets the requirements to ensure the keys are adequately protected. 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.3.4.4 MDFPP33:FDP_DAR_EXT.2.4 

TSS Assurance Activities: The evaluator shall verify that the TSS section of the ST that describes the asymmetric 

key scheme includes a description of the actions taken by the TSF for the purposes of DAR upon transitioning to 

the unlocked state. These actions shall minimally include decrypting all received data using the asymmetric key 

scheme and re-encrypting with the symmetric key scheme used to store data while the device is unlocked. 

Section 6.3 of the ST states that the vendor provides the NIAPSEC library for Sensitive Data Protection (SDP) that 

application developers must use to opt-in for sensitive data protection. When developer’s opt-in for SDP, all data 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 98 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

that is received on the device destined for that application is treated as sensitive. This library calls into the TOE to 

generate an RSA key that acts as a master KEK for the SDP encryption process. When an application that has 

opted-in for SDP receives incoming data while the device is locked, an AES symmetric DEK is generated to encrypt 

that data. The public key from the master RSA KEK above is then used to encrypt the AES DEK. Once the device is 

unlocked, the RSA KEK private key is re-derived and can be used to decrypt the AES DEK for each piece of 

information that was stored while the device was locked. The TOE then takes that decrypted data and re-encrypts 

it following FDP_DAR_EXT.1. 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.3.5 SUBSET INFORMATION FLOW CONTROL  (MDFPP33:FDP_IFC_EXT.1) 

 

2.3.5.1 MDFPP33:FDP_IFC_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall verify that the TSS section of the ST describes the routing 

of IP traffic through processes on the TSF when a VPN client is enabled. The evaluator shall ensure that the 

description indicates which traffic does not go through the VPN and which traffic does. The evaluator shall verify 

that a configuration exists for each baseband protocol in which only the traffic identified by the ST author as 

necessary for establishing the VPN connection (IKE traffic and perhaps HTTPS or DNS traffic) or needed for the 

correct functioning of the TOE is not encapsulated by the VPN protocol (IPsec). The evaluator shall verify that the 

TSS section describes any differences in the routing of IP traffic when using any supported baseband protocols (e.g. 

Wi-Fi or, LTE). 

Section 6.3 of the ST states that the TOE will route all traffic other than traffic necessary to establish the VPN 

connection to the VPN gateway (when the gateway’s configuration specifies so) when the Always-On-VPN is 

enabled. The TOE includes an interceptor kernel module that controls inbound and output packets. When a VPN is 

active, the interceptor will route all incoming packets to the VPN and conversely route all outbound packets to the 

VPN before they are output.  



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 99 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Note that when the TOE tries to connect to a Wi-Fi network, it performs a standard captive portal check which 

sends traffic that bypasses the full tunnel VPN configuration in order to detect whether the Wi-Fi network restricts 

Internet access until one has authenticated or agreed to usage terms through a captive portal.  If the administrator 

wishes to deactivate the captive portal check (in order to prevent the plaintext traffic), they may do this by 

following the instructions in the Admin Guide. 

The only exception to all traffic being routed to the VPN is in the instance of ICMP echo requests. The TOE uses 

ICMP echo responses on the local subnet to facilitate network troubleshooting and categorizes it as a part of ARP. 

As such, if an ICMP echo request is issued on the subnet the TOE is part of, it will respond with an ICMP echo 

response, but no other instances of traffic will be routed outside of the VPN. 

Component Guidance Assurance Activities: The evaluator shall verify that one (or more) of the following options is 

addressed by the documentation: 

- The description above indicates that if a VPN client is enabled, all configurations route all Data Plane traffic 

through the tunnel interface established by the VPN client. 

- The AGD guidance describes how the user or administrator can configure the TSF to meet this requirement. 

- The API documentation includes a security function that allows a VPN client to specify this routing. 

Section 6.0 of the Admin Guide details VPN configuration. 

Always-on VPN—The VPN can be configured so that apps don’t have access to the network until a VPN connection 

is established, which prevents apps from sending data across other networks. 

Always-on VPN supports VPN clients that implement VpnService. The system automatically starts that VPN after the 

device boots. Device owners and profile owners can direct work apps to always connect through a specified VPN. 

Additionally, users can manually set Always-on VPN clients that implement VpnService methods using Settings > 

More > VPN. Always-on VPN can also be enabled manually from the Settings menu. 

Component Testing Assurance Activities: Test 38: If the ST author identifies any differences in the routing 

between Wi-Fi and cellular protocols, the evaluator shall repeat this test with a base station implementing one of 

the identified cellular protocols. 

Step 1: The evaluator shall enable a Wi-Fi configuration as described in the AGD guidance (as required by 

FTP_ITC_EXT.1). The evaluator shall use a packet sniffing tool between the wireless access point and an Internet-

connected network. The evaluator shall turn on the sniffing tool and perform actions with the device such as 

navigating to websites, using provided applications, and accessing other Internet resources. The evaluator shall 

verify that the sniffing tool captures the traffic generated by these actions, turn off the sniffing tool, and save the 

session data. 

Step 2: The evaluator shall configure an IPsec VPN client that supports the routing specified in this requirement, 

and if necessary, configure the device to perform the routing specified as described in the AGD guidance. The 

evaluator shall ensure the test network is capable of sending any traffic identified as exceptions. The evaluator 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 100 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

shall turn on the sniffing tool, establish the VPN connection, and perform the same actions with the device as 

performed in the first step, as well as ensuring that all exception traffic is generated. The evaluator shall verify that 

the sniffing tool captures traffic generated by these actions, turn off the sniffing tool, and save the session data. 

Step 3: The evaluator shall examine the traffic from both step one and step two to verify that all Data Plane traffic 

is encapsulated by IPsec, modulo the exceptions identified in the SFR (if applicable). For each exception listed in 

the SFR, the evaluator shall verify that that traffic is allowed outside of the VPN tunnel. The evaluator shall 

examine the Security Parameter Index (SPI) value present in the encapsulated packets captured in Step two from 

the TOE to the Gateway and shall verify this value is the same for all actions used to generate traffic through the 

VPN. Note that it is expected that the SPI value for packets from the Gateway to the TOE is different than the SPI 

value for packets from the TOE to the Gateway. The evaluator shall be aware that IP traffic on the cellular 

baseband outside of the IPsec tunnel may be emanating from the baseband processor and shall verify with the 

manufacturer that any identified traffic is not emanating from the application processor. 

Step 4: (Conditional: If ICMP is not listed as part of the IP traffic needed for the correct functioning of the TOE) The 

evaluator shall perform an ICMP echo from the TOE to the IP address of another device on the local wireless 

network and shall verify that no packets are sent using the sniffing tool. The evaluator shall attempt to send 

packets to the TOE outside the VPN tunnel (i.e. not through the VPN gateway), including from the local wireless 

network, and shall verify that the TOE discards them. 

Test 38 -  

Step 1 – The evaluator connected the TOE device via Wi-Fi to an access point and then sent pings to and from the 

TOE from multiple addresses and also attempted to browse several websites.  

Step 2 - The evaluator then enabled a VPN connection using a PSK and performed the same actions as in step 1.  

Step 3 & 4 -   The evaluator examined the packet captures from Step 1 and Step 2 and confirmed that the VPN 

network was accessible (and PROTECTED) only when the VPN was enabled.  Other addresses (pings) were possible 

in plain text on the local subnet when the VPN was enabled.  When the VPN connection was established, traffic to 

and from the TOE was blocked or discarded depending on whether a suitable route through the VPN was available. 

 

2.3.6 USER DATA STORAGE  (MDFPP33:FDP_STG_EXT.1) 

 

2.3.6.1 MDFPP33:FDP_STG_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 101 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Component TSS Assurance Activities: The evaluator shall ensure the TSS describes the Trust Anchor Database 

implemented that contain certificates used to meet the requirements of this PP. This description shall contain 

information pertaining to how certificates are loaded into the store, and how the store is protected from 

unauthorized access (for example, UNIX permissions) in accordance with the permissions established in 

FMT_SMF.1 and FMT_MOF_EXT.1.1. 

Section 6.3 of the ST states the TOE’S Trusted Anchor Database consists of the built-in certs and any additional 

user or admin/MDM loaded certificates. The built-in certs are individually stored in the device’s read-only system 

image in the /system/etc/security/cacerts directory, and the user can individually disable certs through Android’s 

user interface [Settings -> Security -> Advanced settings -> Encryption & credentials -> Trusted Credentials]. 

Because the built-in CA certificates reside on the read-only system partition, the TOE places a copy of any disabled 

built-in certificate into the /data/misc/user/X/cacerts-removed/ directory, where 'X' represents the user’s number 

(which starts at 0). The TOE stores added CA certificates in the corresponding /data/misc/user/X/cacerts-added/ 

directory and also stores a copy of the CA certificate in the user’s Secure Key Storage (residing in the 

/data/misc/keystore/user_X/ directory). The TOE uses Linux file permissions that prevent any mobile application or 

entity other than the TSF from modifying these files. Only applications registered as an administrator (such as an 

MDM Agent Application) have the ability to access these files, staying in accordance to the permissions established 

in FMT_SMF.1 and FMT_MOF_EXT.1. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.3.7 INTER-TSF USER DATA TRANSFER PROTECTION (APPLICATIONS)  

(MDFPP33:FDP_UPC_EXT.1/APPS) 

 

2.3.7.1 MDFPP33:FDP_UPC_EXT.1.1/APPS 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.3.7.2 MDFPP33:FDP_UPC_EXT.1.2/APPS 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 102 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Component TSS Assurance Activities: The evaluator shall examine the TSS to determine that it describes that all 

protocols listed in the TSS are specified and included in the requirements in the ST. 

Section 6.3 of the ST states The TOE provides APIs allowing non-TSF applications (mobile applications) the ability to 

establish a secure channel using TLS and HTTPS.  Mobile applications can use the following Android APIs for TLS, 

and HTTPS respectively: 

SSL: 

javax.net.ssl.SSLContext: 

https://developer.android.com/reference/javax/net/ssl/SSLSocket 

Developers then need to swap SocketFactory for SecureSocketFactory, part of a private library provided by 

Google. 

Developers can request this library by emailing: niapsec@google.com  

 

HTTPS: 

javax.net.ssl.HttpsURLConnection: 

https://developer.android.com/reference/javax/net/ssl/HttpsURLConnection 

Developers then need to swap HTTPSUrlConnections for SecureUrl part of a private library provided by 

Google. 

Developers can request this library by emailing: niapsec@google.com 

 

This matches the associated requirement in the ST. 

Component Guidance Assurance Activities: The evaluator shall verify that the API documentation provided 

according to Section 5.2.2 Class ADV: Development includes the security functions (protection channel) described 

in these requirements, and verify that the APIs implemented to support this requirement include the appropriate 

settings/parameters so that the application can both provide and obtain the information needed to assure mutual 

identification of the endpoints of the communication as required by this component. 

The evaluator shall confirm that the operational guidance contains instructions necessary for configuring the 

protocols selected for use by the applications. 

Section 10 of the guidance details the list of evaluated cryptographic APIs. This list includes cryptographic APIs, Key 

management, and certificate management, TLS, and HTTPS. 

Component Testing Assurance Activities: Evaluation Activity Note: The following test requires the developer to 

provide access to a test platform that provides the evaluator with tools that are typically not found on consumer 

Mobile Device products. 

The evaluator shall write, or the developer shall provide access to, an application that requests protected channel 

services by the TSF. The evaluator shall verify that the results from the protected channel match the expected 

https://developer.android.com/reference/javax/net/ssl/SSLSocket
mailto:niapsec@google.com
https://developer.android.com/reference/javax/net/ssl/HttpsURLConnection
mailto:niapsec@google.com


 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 103 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

results according to the API documentation. This application may be used to assist in verifying the protected 

channel Evaluation Activities for the protocol requirements. The evaluator shall also perform the following tests: 

Test 39: The evaluators shall ensure that the application is able to initiate communications with an external IT 

entity using each protocol specified in the requirement, setting up the connections as described in the operational 

guidance and ensuring that communication is successful. 

Test 40: The evaluator shall ensure, for each communication channel with an authorized IT entity, the channel data 

are not sent in plaintext. 

Test 39 – For TLS/HTTPS, see Test Case MDFPP33:FCS_TLSC_EXT.1.1 where an application is used to make TLS/HTTPS 

connections with all claimed ciphers. In each case an application data packet (showing the session is encrypted) is 

sent prior to disconnecting. For IPsec, see MDFPP33:FMT_MOF_EXT.1 test cases 70-3 where per-App VPN policies 

were configured demonstrating that VPNs could be assigned to specific applications. 

Test 40 – This was performed with test case 39 where successful connections were made and the secure protocols 

were observed in the packet capture. 

 

2.3.8 INTER-TSF USER DATA TRANSFER PROTECTION (BLUETOOTH)  

(MDFPP33:FDP_UPC_EXT.1/BLUETOOTH) 

 

2.3.8.1 MDFPP33:FDP_UPC_EXT.1.1/BLUETOOTH 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.3.8.2 MDFPP33:FDP_UPC_EXT.1.2/BLUETOOTH 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall examine the TSS to determine that it describes that all 

protocols listed in the TSS are specified and included in the requirements in the ST. 

Section 6.3 of the ST states the TOE supports a means for non-TSF applications to initiate Bluetooth BD/EDR and LE 

connections. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 104 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The TOE provides APIs allowing non-TSF applications (mobile applications) the ability to establish a secure channel 

using Bluetooth DR/EDR and LE. Mobile applications can use the following Android APIs for Bluetooth respectively: 

 

Bluetooth: 

android.bluetooth: 

http://developer.android.com/reference/android/bluetooth/package-summary.html 

 

This matches the associated requirement in the ST. 

Component Guidance Assurance Activities: The evaluator shall verify that the API documentation provided 

according to Section 5.2.2 Class ADV: Development includes the security functions (protection channel) described 

in these requirements, and verify that the APIs implemented to support this requirement include the appropriate 

settings/parameters so that the application can both provide and obtain the information needed to assure mutual 

identification of the endpoints of the communication as required by this component. 

The evaluator shall confirm that the operational guidance contains instructions necessary for configuring the 

protocols selected for use by the applications. 

Section 4 (Bluetooth Configuration) in the Admin Guide provides the instructions and steps for establishing a 

secure channel to Bluetooth and how to interact with a Bluetooth device. 

Component Testing Assurance Activities: Evaluation Activity Note: The following test requires the developer to 

provide access to a test platform that provides the evaluator with tools that are typically not found on consumer 

Mobile Device products. 

The evaluator shall write, or the developer shall provide access to, an application that requests protected channel 

services by the TSF. The evaluator shall verify that the results from the protected channel match the expected 

results according to the API documentation. This application may be used to assist in verifying the protected 

channel Evaluation Activities for the protocol requirements. The evaluator shall also perform the following tests: 

Test 143: The evaluators shall ensure that the application is able to initiate communications with an external IT 

entity using each protocol specified in the requirement, setting up the connections as described in the operational 

guidance and ensuring that communication is successful. 

Test 144: The evaluator shall ensure, for each communication channel with an authorized IT entity, the channel 

data are not sent in plaintext. 

Test 143 – For Bluetooth BR/EDR, see FIA_BLT_EXT.2 test case 1.  The Bluetooth BR/EDR packets were collected 

with a packet sniffer and examined.  The evaluator concluded the packets are encrypted. The evaluator collected 

Bluetooth LE traffic as part of this test and concluded the packets are encrypted.  

http://developer.android.com/reference/android/bluetooth/package-summary.html


 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 105 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 144 – This was performed with test case 1 where successful connections were made and the secure protocols 

were observed in the packet capture. See Test Case FCS_CKM_EXT.8 test case 1 where the evaluator included 

captures of both successful and unsuccessful Bluetooth LE pairings. 

2.4 IDENTIFICATION AND AUTHENTICATION (FIA) 

 

2.4.1 AUTHENTICATION FAILURE HANDLING  (MDFPP33:FIA_AFL_EXT.1) 

 

2.4.1.1 MDFPP33:FIA_AFL_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.4.1.2 MDFPP33:FIA_AFL_EXT.1.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.4.1.3 MDFPP33:FIA_AFL_EXT.1.3 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.4.1.4 MDFPP33:FIA_AFL_EXT.1.4 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 106 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

 

2.4.1.5 MDFPP33:FIA_AFL_EXT.1.5 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.4.1.6 MDFPP33:FIA_AFL_EXT.1.6 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall ensure that the TSS describes that a value corresponding 

to the number of unsuccessful authentication attempts since the last successful authentication is kept for each 

Authentication Factor interface. The evaluator shall ensure that this description also includes if and how this value 

is maintained when the TOE loses power, either through a graceful powered off or an ungraceful loss of power. 

The evaluator shall ensure that if the value is not maintained, the interface is after another interface in the boot 

sequence for which the value is maintained. 

If the TOE supports multiple authentication mechanisms, the evaluator shall ensure that this description also 

includes how the unsuccessful authentication attempts for each mechanism selected in FIA_UAU.5.1 is handled. 

The evaluator shall verify that the TSS describes if each authentication mechanism utilizes its own counter or if 

multiple authentication mechanisms utilize a shared counter. If multiple authentication mechanisms utilize a 

shared counter, the evaluator shall verify that the TSS describes this interaction. 

The evaluator shall confirm that the TSS describes how the process used to determine if the authentication 

attempt was successful. The evaluator shall ensure that the counter would be updated even if power to the device 

is cut immediately following notifying the TOE user if the authentication attempt was successful or not. 

Section 6.4 of the ST states The TOE maintains in persistent storage, for each user, the number of failed password 

logins since the last successful login (the phone, in its evaluated configuration, only supports password 

authentication), and upon reaching the maximum number of incorrect logins, the TOE performs a full wipe of all 

protected data (and in fact, wipes all user data).  An administrator can adjust the number of failed logins for the 

cryptlock screen from the default of ten failed logins to a value between 0 (deactivate wiping) and 50 through an 

MDM.  The TOE validates passwords by providing them to Android’s Gatekeeper (which runs in the Trusted 

Execution Environment).  If the presented password fails to validate, the TOE increments the incorrect password 

counter before displaying a visual error to the user.  Android’s Gatekeeper keeps this password counter in 

persistent secure storage and increments the counter before validating the password.  Upon successful validation 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 107 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

of the password, this counter is reset back to zero.  By storing the counter persistently, and by incrementing the 

counter prior to validating it, the TOE ensures a correct tally of failed attempts even if it loses power. 

Component Guidance Assurance Activities: The evaluator shall verify that the AGD guidance describes how the 

administrator configures the maximum number of unique unsuccessful authentication attempts. 

Section 3.6 of the Admin Guide details how to configure the maximum number of authentication failures. 

Component Testing Assurance Activities: Test 41: The evaluator shall configure the device with all authentication 

mechanisms selected in FIA_UAU.5.1. The evaluator shall perform the following tests for each available 

authentication interface: 

Test 41a: The evaluator shall configure the TOE, according to the AGD guidance, with a maximum number of 

unsuccessful authentication attempts. The evaluator shall enter the locked state and enter incorrect passwords 

until the wipe occurs. The evaluator shall verify that the number of password entries corresponds to the 

configured maximum and that the wipe is implemented. 

Test 41b: [conditional] If the TOE supports multiple authentication mechanisms the previous test shall be repeated 

using a combination of authentication mechanisms confirming that the critical authentication mechanisms will 

cause the device to wipe and that when the maximum number of unsuccessful authentication attempts for a non-

critical authentication mechanism is exceeded, the device limits authentication attempts to other available 

authentication mechanisms. If multiple authentication mechanisms utilize a shared counter, then the evaluator 

shall verify that the maximum number of unsuccessful authentication attempts can be reached by using each 

individual authentication mechanism and a combination of all authentication mechanisms that share the counter. 

Test 42: The evaluator shall repeat test one, but shall power off (by removing the battery, if possible) the TOE 

between unsuccessful authentication attempts. The evaluator shall verify that the total number of unsuccessful 

authentication attempts for each authentication mechanism corresponds to the configured maximum and that the 

critical authentication mechanisms cause the device to wipe. Alternatively, if the number of authentication failures 

is not maintained for the interface under test, the evaluator shall verify that upon booting the TOE between 

unsuccessful authentication attempts another authentication factor interface is presented before the interface 

under test. 

Test 1a – The evaluator configured the retry limit to 35 in order to test a maximum configured value and then 

attempted that number of failed attempts to ensure that it was enforced.  After the 34th attempt, the evaluator 

rebooted the phone by removing the battery and then attempted to use the incorrect password again for the 35th 

time.  As expected, the power off did not affect the failed login count and the phone initiated a factory reset.  

Test 1b – N/A – the TOE does not support any BAF.    

Test 2 – See Test 1.  The TSS explains that the TOE validates passwords by providing them to Android’s Gatekeeper 

(which runs in the Trusted Execution Environment). If the presented password fails to validate, the TOE increments 

the incorrect password counter before displaying a visual error to the user. Android’s Gatekeeper keeps this 

password counter in persistent secure storage and increments the counter before validating the password.  Upon 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 108 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

successful validation of the password, this counter is reset back to zero.  By storing the counter persistently, and by 

incrementing the counter prior to validating it, the TOE ensures a correct tally of failed attempts even if it loses 

power. 

 

2.4.2 BLUETOOTH USER AUTHORIZATION  (BT10:FIA_BLT_EXT.1) 

 

2.4.2.1 BT10:FIA_BLT_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall examine the TSS to ensure that it contains a description 

of when user permission is required for Bluetooth pairing, and that this description mandates explicit user 

authorization via manual input for all Bluetooth pairing, including application use of the Bluetooth trusted channel 

and situations where temporary (non-bonded) connections are formed. The evaluator shall examine the API 

documentation provided according to Section 5.2.2 and verify that this API documentation does not include any 

API for programmatic entering of pairing information (e.g. PINs, numeric codes, or 'yes/no' responses) intended to 

bypass manual user input during pairing. 

Section 6.4 of the ST explains the TOE requires explicit user authorization before it will pair with a remote 

Bluetooth device. When pairing with another device, the TOE requires that the user either confirm that a displayed 

numeric passcode matches between the two devices or that the user enter (or choose) a numeric passcode that 

the peer device generates (or must enter). The TOE requires this authorization (via manual input) for mobile 

application use of the Bluetooth trusted channel and in situations where temporary (non-bonded) connections are 

formed. 

Component Guidance Assurance Activities: The evaluator shall examine the AGD guidance to verify that these 

user authorization screens are clearly identified and instructions are given for authorizing Bluetooth pairings. 

Section 4.1 of the Admin Gude details Bluetooth pairing and clearly identifies the user authorization screens and 

instructions 

Component Testing Assurance Activities: Test 1: The evaluator shall perform the following steps: 

Step 1: Initiate pairing with the TOE from a remote Bluetooth device that requests no man-in-the-middle 

protection, no bonding, and claims to have NoInputNoOutput input-output (IO) capability. (Such a device will 

attempt to evoke behavior from the TOE that represents the minimal level of user interaction that the TOE 

supports during pairing.) 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 109 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Step 2: Verify that the TOE does not permit any Bluetooth pairing without explicit authorization from the user (e.g. 

the user must have to minimally answer 'yes' or 'allow' in a prompt). 

Test 1 – The evaluator requested Bluetooth pairing with a device that requests no man-in-the-middle protection, 

no bonding, and claims to have NoInputNoOutput input-output (IO) capability.  The evaluator observed that the 

user had to explicitly authorize the pairing. 

 

2.4.3 BLUETOOTH MUTUAL AUTHENTICATION  (BT10:FIA_BLT_EXT.2) 

 

2.4.3.1 BT10:FIA_BLT_EXT.2.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall ensure that the TSS describes how data transfer of any 

type is prevented before the Bluetooth pairing is completed. The TSS shall specifically call out any supported 

RFCOMM and L2CAP data transfer mechanisms. The evaluator shall ensure that the data transfers are only 

completed after the Bluetooth devices are paired and mutually authenticated. 

Section 6.4 of the ST states the TOE does not allow any data transfers with remote devices that have not been 

paired or authorized by the user of the TOE. All Bluetooth connections require initial approval by the user in the 

user interface and cannot be done programmatically. Bluetooth pairing (RFCOMM connections) is completed by 

confirming/entering a displayed passcode in the user interface. TOE support for OBEX (OBject EXchange) through 

L2CAP (Logical Link Control and Adaptation Protocol) requires the user to explicitly authorize the transfer via a 

popup that will be displayed to the user. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The evaluator shall perform the following test: 

Test 1: The evaluator shall use a Bluetooth tool to attempt to access TOE files using the OBEX Object Push service 

and verify that pairing and mutual authentication are required by the TOE before allowing access. (If the OBEX 

Object Push service is unsupported on the TOE, a different service that transfers data over Bluetooth L2CAP and/or 

RFCOMM may be used in this test.) 

Test 1:  The evaluator turned on Bluetooth sniffing on a debug device and then paired the TOE with a second 

device and transferred a screenshot. A packet capture confirmed mutual authentication. 

 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 110 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

2.4.4 REJECTION OF DUPLICATE BLUETOOTH CONNECTIONS  (BT10:FIA_BLT_EXT.3) 

 

2.4.4.1 BT10:FIA_BLT_EXT.3.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall ensure that the TSS describes how Bluetooth 

connections are maintained such that two devices with the same Bluetooth device address are not simultaneously 

connected and such that the initial session is not superseded by any following session initialization attempts. 

Section 6.4 of the ST states that the TOE rejects duplicate Bluetooth connections by only allowing a single session 

per paired device.  This ensures that when the TOE receives a duplicate session attempt while the TOE already has 

an active session with that device, then the TOE ignores the duplicate session. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The evaluator shall perform the following steps: 

Step 1: Pair the TOE with a remote Bluetooth device (DEV1) with a known address BD_ADDR. Establish an active 

session between the TOE and DEV1 with the known address BD_ADDR. 

Step 2: Attempt to pair a second remote Bluetooth device (DEV2) claiming to have a Bluetooth device address 

matching DEV1 BD_ADDR to the TOE. Using a Bluetooth protocol analyzer, verify that the pairing attempt by DEV2 

is not completed by the TOE and that the active session to DEV1 is unaffected. 

Step 3: Attempt to initialize a session to the TOE from DEV2 containing address DEV1 BD_ADDR. Using a Bluetooth 

protocol analyzer, verify that the session initialization attempt by DEV2 is ignored by the TOE and that the initial 

session to DEV1 is unaffected. 

Test 1 - The evaluator paired two TOE devices and established an active bluetooth tethering session between them 

while monitoring bluetooth traffic. The evaluator then copied the bluetooth address of one of the TOEs on an 

external bluetooth machine and attempted a bluetooth pairing from that device.  The evaluator confirmed that the 

TOE was not prompted about a second pairing attempt and the original service remained uninterrupted.  The 

evaluator analyzed the packet capture to ensure that the TOE received initiation packets from the second pairing 

but ignored the second attempt.  The evaluator repeated testing for the other TOE device. 

 

2.4.5 SECURE SIMPLE PAIRING  (BT10:FIA_BLT_EXT.4) 

 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 111 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

2.4.5.1 BT10:FIA_BLT_EXT.4.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.4.5.2 BT10:FIA_BLT_EXT.4.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall verify that the TSS describes the secure simple pairing 

process. 

Section 6.4 states the TOE’s Bluetooth host and controller supports Bluetooth Secure Simple Pairing and the TOE 

utilizes this pairing method when the remote host also supports it. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: Test 1: The evaluator shall perform the following steps: 

Step 1: Initiate pairing with the TOE from a remote Bluetooth device that supports Secure Simple Pairing. 

Step 2: During the pairing process, observe the packets in a Bluetooth protocol analyzer and verify that the TOE 

claims support for both 'Secure Simple Pairing (Host Support)' and 'Secure Simple Pairing (Controller Support)' 

during the LMP Features Exchange. 

Step 3: Verify that Secure Simple Pairing is used during the pairing process. 

Test 1 – The evaluator paired two devices. The evaluator was able to analyze the packet capture and saw where 

the TOE set flags to indicate that it supported Secure Simple Pairing.  However, while the flag does not 

differentiate host vs. controller, given the TOE pairings where in each case one is a host and one the controller it 

can be concluded that both host and controller are supported. 

 

2.4.6 TRUSTED BLUETOOTH DEVICE USER AUTHORIZATION  (BT10:FIA_BLT_EXT.6) 

 

2.4.6.1 BT10:FIA_BLT_EXT.6.1 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 112 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall verify that the TSS describes all Bluetooth profiles and 

associated services for which explicit user authorization is required before a remote device can gain access. The 

evaluator shall also verify that the TSS describes any difference in behavior based on whether or not the device has 

a trusted relationship with the TOE for that service (i.e. whether there are any services that require explicit user 

authorization for untrusted devices that do not require such authorization for trusted devices). The evaluator shall 

also verify that the TSS describes the method by which a device can become 'trusted'. 

Section 6.4 of the ST states the TOE requires explicit user authorization before granting trusted (paired) remote 

devices access to services associated with the OPP and MAP Bluetooth profiles. The TOE requires explicit user 

authorization before granting untrusted (unpaired) remote devices access to services associated with all Bluetooth 

profiles. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The evaluator shall perform the following tests for each service 

protected according to this requirement: 

Test 1: While the service is in active use by an application on the TOE, the evaluator shall attempt to gain access to 

a 'protected' Bluetooth service (as specified in the assignment in FIA_BLT_EXT.6.1) from a 'trusted' remote device. 

The evaluator shall verify that the user is explicitly asked for authorization by the TOE to allow access to the service 

for the particular remote device. The evaluator shall deny the authorization on the TOE and verify that the remote 

attempt to access the service fails due to lack of authorization. 

Test 2: The evaluator shall repeat Test 1, this time allowing the authorization and verifying that the remote device 

successfully accesses the service. 

Test 1 - After pairing the test devices, the evaluator used a third-party tool with Bluetooth enabled on the TOE 

devices, to attempt to connect using the MAP profile.  When prompted the tester denied the connection and 

observed the connection failed and MAP access was not allowed. This test was repeated with OPP. 

Test 2 - After pairing the test devices, the evaluator used a third-party tool with Bluetooth enabled on the TOE 

devices, to attempt to connect using the MAP profile.  When prompted the tester accepted the connection and 

observed the connection succeed and MAP access was allowed.  This test was repeated with OPP. 

 

2.4.7 UNTRUSTED BLUETOOTH DEVICE USER AUTHORIZATION  

(BT10:FIA_BLT_EXT.7) 

 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 113 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

2.4.7.1 BT10:FIA_BLT_EXT.7.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The TSS evaluation activities for this component are addressed by 

FIA_BLT_EXT.6. 

See BT10:FIA_BLT_EXT.6. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The evaluator shall perform the following tests if the TSF differentiates 

between 'trusted' and 'untrusted' devices for the purpose of granting access to services. If it does not, then the 

test evaluation activities for FIA_BLT_EXT.6 are sufficient to satisfy this component. 

Test 1: While the service is in active use by an application on the TOE, the evaluator shall attempt to gain access to 

a 'protected' Bluetooth service (as specified in the assignment in FIA_BLT_EXT.7.1) from an 'untrusted' remote 

device. The evaluator shall verify that the user is explicitly asked for authorization by the TOE to allow access to the 

service for the particular remote device. The evaluator shall deny the authorization on the TOE and verify that the 

remote attempt to access the service fails due to lack of authorization. 

Test 2: The evaluator shall repeat Test 1, this time allowing the authorization and verifying that the remote device 

successfully accesses the service. 

Test 3: (conditional): If there exist any services that require explicit user authorization for access by untrusted 

devices but not by trusted devices (i.e. a service that is listed in FIA_BLT_EXT.7.1 but not FIA_BLT_EXT.6.1), the 

evaluator shall repeat Test 1 for these services and observe that the results are identical. That is, the evaluator 

shall use these results to verify that explicit user approval is required for an untrusted device to access these 

services, and failure to grant this approval will result in the device being unable to access them. 

Test 4: (conditional): If test 3 applies, the evaluator shall repeat Test 2 using any services chosen in Test 3 and 

observe that the results are identical. That is, the evaluator shall use these results to verify that explicit user 

approval is required for an untrusted device to access these services, and granting this approval will result in the 

device being able to access them. 

Test 5: (conditional): If test 3 applies, the evaluator shall repeat Test 3 except this time designating the device as 

'trusted' prior to attempting to access the service. The evaluator shall verify that access to the service is granted 

without explicit user authorization (because the device is now trusted and therefore FIA_BLT_EXT.7.1 no longer 

applies to it). That is, the evaluator shall use these results to demonstrate that the TSF will grant a device access to 

different services depending on whether or not the device is trusted. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 114 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Tests not applicable since TOE does not distinguish between trusted and untrusted.  See FIA_BLT_EXT.6.1. 

 

2.4.8 PORT ACCESS ENTITY AUTHENTICATION  (WLANC10:FIA_PAE_EXT.1) 

 

2.4.8.1 WLANC10:FIA_PAE_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The evaluator shall perform the following tests: 

Test 1: The evaluator shall demonstrate that the TOE has no access to the test network. After successfully 

authenticating with an authentication server through a wireless access system, the evaluator shall demonstrate 

that the TOE does have access to the test network. 

Test 2: The evaluator shall demonstrate that the TOE has no access to the test network. The evaluator shall 

attempt to authenticate using an invalid client certificate, such that the EAP-TLS negotiation fails. This should result 

in the TOE still being unable to access the test network. 

Test 3: The evaluator shall demonstrate that the TOE has no access to the test network. The evaluator shall 

attempt to authenticate using an invalid authentication server certificate, such that the EAP-TLS negotiation fails. 

This should result in the TOE still being unable to access the test network. 

Test 1 - The evaluator loaded the applicable root CA on the TOE and then attempted a connection and the 

evaluator ensured the connection was established. The evaluator then repeated the test first loading a bad 

(expired) client certificate and then a bad (expired) server certificate and confirmed that the connections could not 

be made with bad certificates. 

Test 2 – See Test 1.  This test has been performed where good certificates, bad client certificate, and bad server 

certificate variations are all tested. 

Test 3 -- See Test 1.  This test has been performed where good certificates, bad client certificate, and bad server 

certificate variations are all tested. 

 

2.4.9  PASSWORD MANAGEMENT  (MDFPP33:FIA_PMG_EXT.1) 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 115 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

 

2.4.9.1 MDFPP33:FIA_PMG_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: The evaluator shall examine the operational guidance to determine 

that it provides guidance to security administrators on the composition of strong passwords, and that it provides 

instructions on setting the minimum password length. The evaluator shall also perform the following tests. Note 

that one or more of these tests can be performed with a single test case. 

The “Password Management” table entry in Section 3.6 of the Admin-Guide provides the API for setting the 

minimum passwords length. 

Section 3.7 (Password Recommendations) in the Admin Guide provides guidance to administrators on the 

composition of strong passwords. 

Component Testing Assurance Activities: Test 43: The evaluator shall compose passwords that either meet the 

requirements, or fail to meet the requirements, in some way. For each password, the evaluator shall verify that the 

TOE supports the password. While the evaluator is not required (nor is it feasible) to test all possible compositions 

of passwords, the evaluator shall ensure that all characters, rule characteristics, and a minimum length listed in the 

requirement are supported, and justify the subset of those characters chosen for testing. 

Test 43 – The evaluator set the minimum password length to 16 characters (with Android’s built-in 16 character 

maximum, this requires a 16-character password exactly).  The evaluator then went through all the possible 

characters claimed in the ST, 16 at a time.  The evaluator was able to verify that all claimed characters were valid.  

The evaluator attempted to set a password of 15 and 17 characters and was denied as expected. 

 

2.4.10 AUTHENTICATION THROTTLING  (MDFPP33:FIA_TRT_EXT.1) 

 

2.4.10.1 MDFPP33:FIA_TRT_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 116 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Component TSS Assurance Activities: The evaluator shall verify that the TSS describes the method by which 

authentication attempts are not able to be automated. The evaluator shall ensure that the TSS describes either 

how the TSF disables authentication via external interfaces (other than the ordinary user interface) or how 

authentication attempts are delayed in order to slow automated entry and shall ensure that this delay totals at 

least 500 milliseconds over 10 attempts for all authentication mechanisms selected in FIA_UAU.5.1. 

Section 6.4 of the ST states Android’s GateKeeper throttling is used to prevent brute-force attacks. After a user 

enters an incorrect password or a failed biometric, GateKeeper APIs return a value in milliseconds (500ms default) 

in which the user must wait before another authentication attempt. Any attempts before the defined amount of 

time has passed will be ignored by GateKeeper. Gatekeeper also keeps a count of the number of failed 

authentication attempts since the last successful attempt. These two values together are used to prevent brute-

force attacks of the TOE. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.4.11 MULTIPLE AUTHENTICATION MECHANISMS  (MDFPP33:FIA_UAU.5) 

 

2.4.11.1 MDFPP33:FIA_UAU.5.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.4.11.2 MDFPP33:FIA_UAU.5.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall ensure that the TSS describes each mechanism provided 

to support user authentication and the rules describing how the authentication mechanisms provide 

authentication. 

Specifically, for all authentication mechanisms specified in FIA_UAU.5.1, the evaluator shall ensure that the TSS 

describes the rules as to how each authentication mechanism is used. Example rules are how the authentication 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 117 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

mechanism authenticates the user (i.e. how does the TSF verify that the correct password or biometric sample was 

entered), the result of a successful authentication (i.e. is the user input used to derive or unlock a key) and which 

authentication mechanism can be used at which authentication factor interfaces (i.e. if there are times, for 

example, after a reboot, that only specific authentication mechanisms can be used). If multiple BAFs are claimed in 

FIA_MBV_EXT.1.1 in the Biometric Enrollment and Verification, version 1.1, the interaction between the BAFs must 

be described. For example, whether the multiple BAFs can be enabled at the same time. 

Section 6.4 of the ST states the TOE, in its evaluated configuration, allows the user to authenticate using a password.  

Upon boot, the first unlock screen presented requires the user to enter their password to unlock the device. 

Upon device lock during normal use of the device, the user has the ability to unlock the phone by entering their 

password.  Throttling of this input can be read about in the FIA_AFL_EXT.1 section. The entered password is 

compared to a value derived as described in the key hierarchy and key table above (FCS_STG_EXT.2 and 

FCS_CKM_EXT.4, respectively).  

Some security related user settings (e.g. changing the password, setting up SmartLock, etc.) and actions (e.g. factory 

reset) require the user to enter their password before modifying these settings or executing these actions.  

The TOE’s evaluated configuration disallows other authentication mechanisms, such as pattern, PIN, or Smart Lock 

mechanisms (on-body detection, trusted places, trusted devices, trusted face, trusted voice). 

Component Guidance Assurance Activities: The evaluator shall verify that configuration guidance for each 

authentication mechanism is addressed in the AGD guidance. 

The TOE, in its evaluated configuration, allows the user to authenticate using a password. 

The “Password Management” table entry in Section 3.6 (Common Criteria Related Settings) of the Admin Guide 

provides the APIs for setting the minimum passwords length, password complexity, password expiration and 

maximum number of authentication failures. 

Component Testing Assurance Activities: Test 44: For each authentication mechanism selected in FIA_UAU.5.1, 

the evaluator shall enable that mechanism and verify that it can be used to authenticate the user at the specified 

authentication factor interfaces. 

Test 45: For each authentication mechanism rule, the evaluator shall ensure that the authentication mechanisms 

behave accordingly. 

Test 44 & 45 – 

The evaluator configured the TOE with a password that could be used as an authentication factor.  The evaluator 

then locked the device and used the authentication method to unlock the phone. The password was able to be 

used to transition the TOE from the locked state to the unlocked state. 

Next, the evaluator rebooted the device and confirmed that a password was required to unlock and decrypt the 

phone. The evaluator also confirmed that the TOE requires entry of the password before allowing the password 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 118 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

authentication factor to be changed. The evaluator also tested wiping the device and confirmed that the password 

was required as a final step. 

 

2.4.12 RE-AUTHENTICATING (CREDENTIAL CHANGE)  

(MDFPP33:FIA_UAU.6/CREDENTIAL) 

 

2.4.12.1 MDFPP33:FIA_UAU.6.1/CREDENTIAL 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: Test 46: The evaluator shall configure the TSF to use the Password 

Authentication Factor according to the AGD guidance. The evaluator shall change Password Authentication Factor 

according to the AGD guidance and verify that the TSF requires the entry of the Password Authentication Factor 

before allowing the factor to be changed. 

Test 47: [conditional] If biometric in accordance with the Biometric Enrollment and Verification, version 1.1 is 

selected in FIA_UAU.5.1, for each BAF claimed in FIA_MBV_EXT.1.1 in the Biometric Enrollment and Verification, 

version 1.1 the evaluator shall configure the TSF to use the BAF, which includes configuring the Password 

Authentication Factor, according to the AGD guidance. The evaluator shall change the BAF according to the AGD 

guidance and verify that the TSF requires entry of the Password Authentication Factor before allowing the factor to 

be changed. 

Test 48: [conditional] If hybrid is selected in FIA_UAU.5.1, the evaluator shall configure the TSF to use the BAF and 

PIN or password, which includes configuring the Password Authentication Factor, according to the AGD guidance. 

The evaluator shall change the BAF and PIN according to the AGD guidance and verify that the TSF requires the 

entry of the Password Authentication Factor before allowing the factor to be changed. 

Test 46 – The evaluator used the TOE's Lock Screen settings under the Settings Application to change the screen 

lock password.  Before the evaluator could choose the type of screen lock, the evaluator was prompted for the old 

password.   

Test 47 – Not applicable, the TOE does not claim any biometrics as a part of MDFPP33:FIA_UAU.5.1.   

Test 48 – Not applicable, the TOE does not claim any HAF as a part of MDFPP33:FIA_UAU.5.1 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 119 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

 

2.4.13 RE-AUTHENTICATING (TSF LOCK)  (MDFPP33:FIA_UAU.6/LOCKED) 

 

2.4.13.1 MDFPP33:FIA_UAU.6.1/LOCKED 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: Test 49: The evaluator shall configure the TSF to transition to the locked 

state after a time of inactivity (FMT_SMF.1) according to the AGD guidance. The evaluator shall wait until the TSF 

locks and then verify that the TSF requires the entry of the Password Authentication Factor before transitioning to 

the unlocked state. 

Test 50: [conditional] If biometric in accordance with the Biometric Enrollment and Verification, version 1.1 is 

selected in FIA_UAU.5.1, for each BAF claimed in FIA_MBV_EXT.1.1 in the Biometric Enrollment and Verification, 

version 1.1 the evaluator shall repeat Test 1 verifying that the TSF requires the entry of the BAF before 

transitioning to the unlocked state. 

Test 51: [conditional] If hybrid is selected in FIA_UAU.5.1, the evaluator shall repeat Test 1 verifying that the TSF 

requires the entry of the BAF and PIN/password before transitioning to the unlocked state. 

Test 52: The evaluator shall configure user-initiated locking according to the AGD guidance. The evaluator shall 

lock the TSF and then verify that the TSF requires the entry of the Password Authentication Factor before 

transitioning to the unlocked state. 

Test 53: [conditional] If biometric in accordance with the Biometric Enrollment and Verification, version 1.1 is 

selected in FIA_UAU.5.1, for each BAF claimed in FIA_MBV_EXT.1.1 in the Biometric Enrollment and Verification, 

version 1.1 the evaluator shall repeat Test 52 verifying that the TSF requires the entry of the BAF before 

transitioning to the unlocked state. 

Test 54: [conditional] If hybrid is selected in FIA_UAU.5.1, the evaluator shall repeat Test 52 verifying that the TSF 

requires the entry of the BAF and PIN/password before transitioning to the unlocked state. 

Test 49 – The evaluator configured the TOE to transition to the locked state after a time of inactivity. In each case 

after the session locks a password dialog is presented and a valid password must be entered to unlock the TOE. 

Test 50 – Not applicable, the TOE does not claim any biometrics as a part of MDFPP33:FIA_UAU.5.1.  



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 120 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 51 – Not applicable, the TOE does not claim any HAF as a part of MDFPP33:FIA_UAU.5.1. 

Test 52 – The evaluator transitioned the TOE from a locked state (by pressing the power button on the TOE) to the 

unlocked state using the configured password. 

Test 53 – Not applicable, the TOE does not claim any biometrics as a part of MDFPP33:FIA_UAU.5.1. 

Test 54 – Not applicable, the TOE does not claim any HAF as a part of MDFPP33:FIA_UAU.5.1 

 

2.4.14 PROTECTED AUTHENTICATION FEEDBACK  (MDFPP33:FIA_UAU.7) 

 

2.4.14.1 MDFPP33:FIA_UAU.7.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall ensure that the TSS describes the means of obscuring the 

authentication entry, for all authentication methods specified in FIA_UAU.5.1. 

Section 6.4 of the ST states the TOE allows the user to enter the user's password from the lock screen. The TOE 

will, by default, display the most recently entered character of the password briefly or until the user enters the 

next character in the password, at which point the TOE obscures the character by replacing the character with a 

dot symbol. 

Component Guidance Assurance Activities: The evaluator shall verify that any configuration of this requirement is 

addressed in the AGD guidance and that the password is obscured by default. 

No configuration is required nor available for this requirement, thus it is not present in the AGD. 

Component Testing Assurance Activities: Test 55: The evaluator shall enter passwords on the device, including at 

least the Password Authentication Factor at lockscreen, and verify that the password is not displayed on the 

device. 

Test 56: [conditional] If biometric in accordance with the Biometric Enrollment and Verification, version 1.1 is 

selected in FIA_UAU.5.1, for each BAF claimed in FIA_MBV_EXT.1.1 in the Biometric Enrollment and Verification, 

version 1.1 the evaluator shall authenticate by producing a biometric sample at lock screen. As the biometric 

algorithms are performed, the evaluator shall verify that sensitive images, audio, or other information identifying 

the user are kept secret and are not revealed to the user. Additionally, the evaluator shall produce a biometric 

sample that fails to authenticate and verify that the reasons for authentication failure (user mismatch, low sample 

quality, etc.) are not revealed to the user. It is acceptable for the BAF to state that it was unable to physically read 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 121 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

the biometric sample, for example, if the sensor is unclean or the biometric sample was removed too quickly. 

However, specifics regarding why the presented biometric sample failed authentication shall not be revealed to 

the user. 

Test 55 –The evaluator observed that at the lockscreen and change password screen no characters were displayed 

to the user.  

Test 56 – Not applicable, the TOE does not claim any biometrics as a part of MDFPP33:FIA_UAU.5.1. 

 

2.4.15 AUTHENTICATION FOR CRYPTOGRAPHIC OPERATION  

(MDFPP33:FIA_UAU_EXT.1) 

 

2.4.15.1 MDFPP33:FIA_UAU_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall verify that the TSS section of the ST describes the 

process for decrypting protected data and keys. The evaluator shall ensure that this process requires the user to 

enter a Password Authentication Factor and, in accordance with FCS_CKM_EXT.3, derives a KEK, which is used to 

protect the software-based secure key storage and (optionally) DEK(s) for sensitive data, in accordance with 

FCS_STG_EXT.2. 

Section 6.4 explains that in Section 6.2 (FCS_STG_EXT.2) the TOE’s key hierarchy requires the user's password in 

order to derive the KEK_* keys in order to decrypt other KEKs and DEKs. Thus, until it has the user's password, the 

TOE cannot decrypt the DEK utilized for Data-At-Rest encryption, and thus cannot decrypt the user’s protected 

data. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The following tests may be performed in conjunction with 

FDP_DAR_EXT.1 and FDP_DAR_EXT.2. 

Evaluation Activity Note: The following test require the developer to provide access to a test platform that 

provides the evaluator with tools that are typically not found on consumer Mobile Device products. 

Test 57: The evaluator shall enable encryption of protected data and require user authentication according to the 

AGD guidance. The evaluator shall write, or the developer shall provide access to, an application that includes a 

unique string treated as protected data. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 122 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The evaluator shall reboot the device, use a tool provided by developer to search for the unique string amongst 

the application data, and verify that the unique string cannot be found. The evaluator shall enter the Password 

Authentication Factor to access full device functionality, use a tool provided by the developer to access the unique 

string amongst the application data, and verify that the unique string can be found. 

Test 58: [conditional] The evaluator shall require user authentication according to the AGD guidance. The 

evaluator shall store a key in the software-based secure key storage. 

The evaluator shall lock the device, use a tool provided by developer to access the key amongst the stored data, 

and verify that the key cannot be retrieved or accessed. The evaluator shall enter the Password Authentication 

Factor to access full device functionality, use a tool provided by developer to access the key, and verify that the key 

can be retrieved or accessed. 

Test 59: [conditional] The evaluator shall enable encryption of sensitive data and require user authentication 

according to the AGD guidance. The evaluator shall write, or the developer shall provide access to, an application 

that includes a unique string treated as sensitive data. 

The evaluator shall lock the device, use a tool provided by developer to attempt to access the unique string 

amongst the application data, and verify that the unique string cannot be found. The evaluator shall enter the 

Password Authentication Factor to access full device functionality, use a tool provided by developer to access the 

unique string amongst the application data, and verify that the unique string can be retrieved. 

Test case 57 - The evaluator developed an application that was capable of creating a known string data which 

would be protected under the platform’s Data at Rest encryption.  The evaluator created a known string in a 

known location.  The evaluator verified the string could be read. The evaluator then rebooted the phone and 

before unlocking, tried to access the same string and could not.  The evaluator unlocked the device and 

demonstrated the string could be found again. 

Test case 58 - See Test Cases MDFPP33:FDP_DAR_EXT.1 and MDFPP33:FDP_DAR_EXT.2 

Test case 59 - See Test Cases under MDFPP33:FDP_DAR_EXT.2.  During this test, the evaluator created sensitive 

data through the vendor’s sensitive data protection API and attempted to access this file while the device was 

unlocked and locked.  The evaluator found that while sensitive data can be written at any time, in order to read 

the sensitive data, the evaluator had to supply an authentication factor.  With the correct authentication factor, 

the TOE was able to provide access to the protected keystore and the necessary keys could be used to decrypt the 

sensitive data.  Without the password, the evaluator was not able to read the contents of the sensitive data. 

 

2.4.16 TIMING OF AUTHENTICATION  (MDFPP33:FIA_UAU_EXT.2) 

 

2.4.16.1 MDFPP33:FIA_UAU_EXT.2.1 

TSS Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 123 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.4.16.2 MDFPP33:FIA_UAU_EXT.2.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall verify that the TSS describes the actions allowed by 

unauthorized users in the locked state. 

Section 6.4 of the ST states the TOE, when configured to require a user password, allows a user to perform the 

actions assigned in MDFPP33:FIA_UAU_EXT.2.1 without first successfully authenticating. Choosing the input 

method allows the user to select between different keyboard devices (say, for example, if the user has installed 

additional keyboards). Note that the TOE automatically names and saves (to the internal Flash) any screen shots or 

photos taken from the lock screen, and the TOE provides the user no opportunity to name them or change where 

they are stored. 

When configured, the user can also launch Google Assistant to initiate some features of the phone. However, if the 

command requires access to the user’s data (e.g. contacts for calls or messages), the phone requires the user to 

manually unlock the phone before the action can be completed. 

Beyond those actions, a user cannot perform any other actions other than observing notifications displayed on the 

lock screen until after successfully authenticating. Additionally, the TOE provides the user the ability to hide the 

contents of notifications once a password (or any other locking authentication method) is enabled. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The evaluator shall attempt to perform some actions not listed in the 

selection while the device is in the locked state and verify that those actions do not succeed. 

The evaluator locked the phone and attempted to perform actions not listed in the selection.  The evaluator 

confirmed that authentication was required to proceed with all attempted actions not listed in the selection. 

 

2.4.17 X.509 VALIDATION OF CERTIFICATES - PER TD0689  

(MDFPP33:FIA_X509_EXT.1) 

 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 124 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

2.4.17.1 MDFPP33:FIA_X509_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.4.17.2 MDFPP33:FIA_X509_EXT.1.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall ensure the TSS describes where the check of validity of 

the certificates takes place. The evaluator ensures the TSS also provides a description of the certificate path 

validation algorithm. 

Section 6.4 of the ST provides the certificate checking algorithm.  The TOE checks the validity of all imported CA 

certificates by checking for the presence of the basicConstraints extension and that the CA flag is set to TRUE as 

the TOE imports the certificate. Additionally, the TOE verifies the extendedKeyUsage Server Authentication 

purpose during WPA2/3 EAP-TLS negotiation. The TOE’s certificate validation algorithm examines each certificate 

in the path (starting with the peer’s certificate) and first checks for validity of that certificate (e.g., has the 

certificate expired; or if not yet valid, whether the certificate contains the appropriate X.509 extensions [e.g., the 

CA flag in the basic constraints extension for a CA certificate, or that a server certificate contains the Server 

Authentication purpose in the extendedKeyUsage field]), then verifies each certificate in the chain (applying the 

same rules as above, but also ensuring that the Issuer of each certificate matches the Subject in the next rung “up” 

in the chain and that the chain ends in a self-signed certificate present in either the TOE’s trusted anchor database 

or matches a specified Root CA), and finally the TOE performs revocation checking for all certificates in the chain. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The tests described must be performed in conjunction with the other 

Certificate Services evaluation activities, including the use cases in FIA_X509_EXT.2.1 and FIA_X509_EXT.3. The 

tests for the extendedKeyUsage rules are performed in conjunction with the uses that require those rules. The 

evaluator shall create a chain of at least four certificates: the node certificate to be tested, two Intermediate CAs, 

and the self-signed Root CA. 

Test 60: The evaluator shall demonstrate that validating a certificate without a valid certification path results in the 

function failing, for each of the following reasons, in turn: 

- By establishing a certificate path in which one of the issuing certificates is not a CA certificate, 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 125 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

- By omitting the basicConstraints field in one of the issuing certificates, 

- By setting the basicConstraints field in an issuing certificate to have CA=False, 

- By omitting the CA signing bit of the key usage field in an issuing certificate, and 

- By setting the path length field of a valid CA field to a value strictly less than the certificate path. 

The evaluator shall then establish a valid certificate path consisting of valid CA certificates, and demonstrate that 

the function succeeds. The evaluator shall then remove trust in one of the CA certificates, and show that the 

function fails. 

Test 61: The evaluator shall demonstrate that validating an expired certificate results in the function failing. 

Test 62: The evaluator shall test that the TOE can properly handle revoked certificates-conditional on whether CRL, 

OCSP, OSCP stapling, or OCSP multi-stapling is selected; if multiple methods are selected, then the following tests 

shall be performed for each method: 

The evaluator shall test revocation of the node certificate. 

The evaluator shall also test revocation of the intermediate CA certificate (i.e. the intermediate CA certificate 

should be revoked by the root CA). For the test of the WLAN use case, only pre-stored CRLs are used. If OCSP 

stapling per RFC 6066 is the only supported revocation method, this test is omitted. 

The evaluator shall ensure that a valid certificate is used, and that the validation function succeeds. The evaluator 

then attempts the test with a certificate that has been revoked (for each method chosen in the selection) to 

ensure when the certificate is no longer valid that the validation function fails. 

Test 63: If any OCSP option is selected, the evaluator shall configure the OCSP server or use a man-in-the-middle 

tool to present a certificate that does not have the OCSP signing purpose and verify that validation of the OCSP 

response fails. If CRL as specified in RFC 8603 is selected, the evaluator shall configure the CA to sign a CRL with a 

certificate that does not have the cRLsign key usage bit set, and verify that validation of the CRL fails. 

Test 64: The evaluator shall modify any byte in the first eight bytes of the certificate and demonstrate that the 

certificate fails to validate (the certificate will fail to parse correctly). 

Test 65: The evaluator shall modify any bit in the last byte of the signature algorithm of the certificate and 

demonstrate that the certificate fails to validate (the signature on the certificate will not validate). 

Test 66: The evaluator shall modify any byte in the public key of the certificate and demonstrate that the 

certificate fails to validate (the signature on the certificate will not validate). 

Test 67: 

Test 67.1: (Conditional on support for EC certificates as indicated in FCS_COP.1(3)). The evaluator shall establish a 

valid, trusted certificate chain consisting of an EC leaf certificate, an EC Intermediate CA certificate not designated 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 126 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

as a trust anchor, and an EC certificate designated as a trusted anchor, where the elliptic curve parameters are 

specified as a named curve. The evaluator shall confirm that the TOE validates the certificate chain. 

Test 67.2: (Conditional on support for EC certificates as indicated in FCS_COP.1(3)). The evaluator shall replace the 

intermediate certificate in the certificate chain for Test 8a with a modified certificate, where the modified 

intermediate CA has a public key information field where the EC parameters uses an explicit format version of the 

Elliptic Curve parameters in the public key information field of the intermediate CA certificate from Test 8a, and 

the modified Intermediate CA certificate is signed by the trusted EC root CA, but having no other changes. The 

evaluator shall confirm the TOE treats the certificate as invalid. 

Test 60 – Part A: The evaluator loaded the applicable root CA on the TOE and then attempted a connection and 

confirmed that the connection succeeded with a complete certificate chain. Part B: The evaluator then configured 

the server to utilize an incorrect CA (ecdsa based instead of rsa, simulating removing the root-ca) and verified the 

connection failed. Part C-1: The evaluator then configured the server to utilize an issuing CA certificate that 

omitted the basicConstraints field and verified that the connection failed. Part C-2: The evaluator then configured 

the server to utilize an issuing CA certificate that had the basicConstraints cA Flag field set to false and verified that 

the connection failed. Part C-3: the evaluator configured the server to have a sub CA certificate that omitted the 

CA Signing bit of the key usage field and verified that the connection failed. Part C-4: The evaluator configured the 

server to have a sub CA certificate that indicates an incorrect (too short) certificate path length and verified that 

the connection failed. This test was repeated for both TLS and HTTPS. 

Test 61 - For this test, the evaluator alternately configured freeradius on a test server to send an authentication 

certificate 1) that is valid, 2) that is expired, and 3) issued by an intermediate CA that is expired. In each case, the 

evaluator then attempted to connect the TLSC TOE client to the test server and confirmed that the connection 

succeeded in the first case, but failed in the next two cases with the expired certificates.   This test was performed 

for 2 variations as follows: TLS/HTTPS and TLS. 

Test 62- For this test, the evaluator alternately configured stunnel on a test server to send an authentication 

certificate 1) that is valid, 2) that is revoked, and 3) issued by an intermediate CA that is revoked. In each case, the 

evaluator then attempted to connect the TLSC TOE client to the test server and confirmed that the connection 

succeeded in the first case, but failed in the next two cases with the revoked certificates. This test was performed 

for 2 variations as follows: TLS/HTTPS and TLS  

Test 63 – OCSP was selected so this test applies. For this test, the evaluator alternately configured stunnel on a test 

server to send an authentication certificate 1) that is valid, 2) that has a root that refers to an OCSP revocation 

server where the signer lacks OCSPSigning, 3) issued by an intermediate CA whose issuer CA refers to an OCSP 

revocation server where the signer lacks OCSPSigning, and 4) issued by an intermediate CA referring to an OCSP 

revocation server where the signer lacks OCSPSigning. The connection was rejected in each invalid case. This test 

was performed for 2 variations as follows: TLS/HTTPS and TLS. 

Test 64- For this test, the evaluator alternately configured freeradius on a test server to send an authentication 

certificate 1) that is valid, 2) that has one byte in the ASN1 field changed, 3) that has one byte in the certificate 

signature changed, and 4) that has one byte in the certificate public key changed. In each case, the evaluator then 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 127 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

attempted to connect the TLSC TOE client to the test server.  As expected, in the first case, the connection was 

accepted.  In the following three cases, the connection was rejected due to the certificate being 

modified/corrupted.  This test was performed for 2 variations as follows: TLS/HTTPS and TLS. 

Test 65 – This test has been performed in conjunction with test 5. 

Test 66 – This test has been performed in conjunction with test 5. 

Test 67- For this test, the evaluator alternatively configured a valid EC certificate chain and one with a modified 

intermediate EC certificate and verified that the connection succeeded and failed respectively. This test was 

performed for 2 variations as follows: TLS/HTTPS and TLS. 

 

2.4.18 X.509 CERTIFICATE VALIDATION  (WLANC10:FIA_X509_EXT.1/WLAN) 

 

2.4.18.1 WLANC10:FIA_X509_EXT.1.1/WLAN 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.4.18.2 WLANC10:FIA_X509_EXT.1.2/WLAN 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall ensure the TSS describes where the check of validity of 

the EAP-TLS certificates takes place. The evaluator shall also ensure the TSS also provides a description of the 

certificate path validation algorithm. 

Section 6.4 of the ST provides the certificate checking algorithm.  The TOE checks the validity of all imported CA 

certificates by checking for the presence of the basicConstraints extension and that the CA flag is set to TRUE as 

the TOE imports the certificate. Additionally, the TOE verifies the extendedKeyUsage Server Authentication 

purpose during WPA2/EAP-TLS negotiation. The TOE’s certificate validation algorithm examines each certificate in 

the path (starting with the peer’s certificate) and first checks for validity of that certificate (e.g., has the certificate 

expired; or if not yet valid, whether the certificate contains the appropriate X.509 extensions [e.g., the CA flag in 

the basic constraints extension for a CA certificate, or that a server certificate contains the Server Authentication 

purpose in the extendedKeyUsage field]), then verifies each certificate in the chain (applying the same rules as 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 128 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

above, but also ensuring that the Issuer of each certificate matches the Subject in the next rung “up” in the chain 

and that the chain ends in a self-signed certificate present in either the TOE’s trusted anchor database or matches 

a specified Root CA), and finally the TOE performs revocation checking for all certificates in the chain. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The tests described must be performed in conjunction with the other 

Certificate Services assurance activities. The tests for the extendedKeyUsage rules are performed in conjunction 

with the uses that require those rules. The evaluator shall create a chain of at least four certificates: the node 

certificate to be tested, two Intermediate CAs, and the self-signed Root CA. 

Test 1: The evaluator shall then load a certificate or certificates to the Trust Anchor Database needed to validate 

the certificate to be used in the function (e.g. application validation), and demonstrate that the function succeeds. 

The evaluator then shall delete one of the certificates, and show that the function fails. 

Test 2: The evaluator shall demonstrate that validating an expired certificate results in the function failing. 

Test 3: The evaluator shall construct a certificate path, such that the certificate of the CA issuing the TOE's 

certificate does not contain the basicConstraints extension. The validation of the certificate path fails. 

Test 4: The evaluator shall construct a certificate path, such that the certificate of the CA issuing the TOE's 

certificate has the cA flag in the basicConstraints extension not set. The validation of the certificate path fails. 

Test 5: The evaluator shall modify any byte in the first eight bytes of the certificate and demonstrate that the 

certificate fails to validate (the certificate will fail to parse correctly). 

Test 6: The evaluator shall modify any bit in the last byte of the signature algorithm of the certificate and 

demonstrate that the certificate fails to validate (the signature on the certificate will not validate). 

Test 7: The evaluator shall modify any byte in the public key of the certificate and demonstrate that the certificate 

fails to validate (the signature on the certificate will not validate). 

Test 1: The evaluator first loaded a valid RSA certificate chain and verified the connection succeeded. Next, the 

evaluator configured the TOE client to use an ECDSA root certificate with the RSA certificate chain (simulating 

deleting the root-ca, which must have a value selected) and verified the connection failed. 

Test 2: the evaluator alternately configured freeradius on a test server to send an authentication certificate 1) that 

is valid, 2) that is expired, and 3) issued by an intermediate CA that is expired. In each case, the evaluator then 

attempted to connect the TLSC TOE client to the test server and confirmed the connection succeeded only if there 

are no expired certificates. 

Test 3: For this test, the evaluator alternately configured freeradius on a test server to send an authentication 

certificate issued by a Sub CA with no BasicConstraints and with BasicConstraints but the CA Flag set to false. In 

both cases, the evaluator then attempted to connect the TLSC TOE client to the test server and confirmed the 

connection was rejected in each case. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 129 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 4: Completed in conjunction with Test 3. 

Test 5: For this test, the evaluator alternately configured freeradius on a test server to send an authentication 

certificate 1) that is valid, 2) that has one byte in the ASN1 field changed, 3) that has one byte in the certificate 

signature changed, and 4) that has one byte in the certificate public key changed. In each case, the evaluator then 

attempted to connect the TLSC TOE client to the test server expecting the connection to succeed only if the 

certificate is not modified/corrupted. 

Test 6: Completed in conjunction with Test 5 

Test 7: Completed in conjunction with Test 5 

2.4.19 X.509 CERTIFICATE AUTHENTICATION  (MDFPP33:FIA_X509_EXT.2) 

 

2.4.19.1 MDFPP33:FIA_X509_EXT.2.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.4.19.2 MDFPP33:FIA_X509_EXT.2.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall check the TSS to ensure that it describes how the TOE 

chooses which certificates to use, and any necessary instructions in the administrative guidance for configuring the 

operating environment so that the TOE can use the certificates. 

The evaluator shall examine the TSS to confirm that it describes the behavior of the TOE when a connection cannot 

be established during the validity check of a certificate used in establishing a trusted channel. The evaluator shall 

verify that any distinctions between trusted channels are described. 

Section 6.4 in the ST states that the TOE uses X.509v3 certificates during EAP-TLS, TLS, and HTTPS. The TOE comes 

with a built-in set of default Trusted Credentials (Android's set of trusted CA certificates), and while the user 

cannot remove any of the built-in default CA certificates, the user can disable any of those certificates through the 

user interface so that certificates issued by disabled CA’s cannot validate successfully. In addition, a user and an 

administrator/MDM can import a new trusted CA certificate into the Trust Anchor Database (the TOE stores the 

new CA certificate in the Security Key Store). 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 130 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The TOE does not establish TLS connections itself (beyond EAP-TLS used for WPA2/WPA3 Wi-Fi connections), but 

provides a series of APIs that mobile applications can use to check the validity of a peer certificate. The mobile 

application, after correctly using the specified APIs, can be assured as to the validity of the peer certificate and be 

assured that the TOE will not establish the trusted connection if the peer certificate cannot be verified (including 

validity, certification path, and revocation [through OCSP]). If, during the process of certificate verification, the TOE 

cannot establish a connection with the server acting as the OCSP Responder, the TOE will not deem the server’s 

certificate as valid and will not establish a TLS connection with the server. 

The user or administrator explicitly specifies the trusted CA that the TOE will use for EAP-TLS authentication of the 

server’s certificate. For mobile applications, the application developer will specify whether the TOE should use the 

Android system Trusted CAs, use application-specified trusted CAs, or a combination of the two. In this way, the 

TOE always knows which trusted CAs to use. 

Component Guidance Assurance Activities: If the requirement that the administrator is able to specify the default 

action, then the evaluator shall ensure that the operational guidance contains instructions on how this 

configuration action is performed. 

Not applicable.  The administrator specifying the default action is not selected in the ST. 

Component Testing Assurance Activities: The evaluator shall perform the following test for each trusted channel: 

Test 68: The evaluator shall demonstrate that using a valid certificate that requires certificate validation checking 

to be performed in at least some part by communicating with a non-TOE IT entity. The evaluator shall then 

manipulate the environment so that the TOE is unable to verify the validity of the certificate, and observe that the 

action selected in FIA_X509_EXT.2.2 is performed. If the selected action is administrator-configurable, then the 

evaluator shall follow the operational guidance to determine that all supported administrator-configurable options 

behave in their documented manner. 

Test 68 - For this test, the evaluator alternately configured stunnel on a test server to send an authentication 

certificate with valid/accessible revocation servers and an authentication certificate with revocation information 

referring to an inaccessible revocation server. In each case, the evaluator then attempted to connect the TLSC TOE 

client to the test server expecting the connection to be successful when the revocation server is accessible and 

when the revocation server is not accessible only if that behavior is claimed for the TOE. In this test, the test server 

uses a server certificate containing CDP/CRL and AIA/OCSP extensions that point to a revocation server at an 

empty address (192.168.144.44), and because no such server exists, the TOE’s revocation requests will time out. 

The evaluator noted that the correct OCSP server was shutdown in between the success and failure case.  As a 

result, the TOE’s attempt to connect to the OCSP server to retrieve revocation info for the subCA's certificate 

failed, resulting in the connection being rejected. The results are iterated for 2 variations as follows: HTTPS and 

TLS. 

 

2.4.20 X.509 CERTIFICATE AUTHENTICATION (EAP-TLS FOR WLAN) - TD0703 

APPLIED  (WLANC10:FIA_X509_EXT.2/WLAN) 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 131 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

 

2.4.20.1 WLANC10:FIA_X509_EXT.2.1/WLAN 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall check the TSS to ensure that it describes how the TOE 

chooses which certificates to use, and any necessary instructions in the administrative guidance for configuring the 

operational environment so that the TOE can use the certificates. (TD0703 applied) 

Section 6.4 in the ST states that TOE uses X.509v3 certificates during EAP-TLS, TLS, and HTTPS. The TOE comes with 

a built-in set of default Trusted Credentials (Android's set of trusted CA certificates), and while the user cannot 

remove any of the built-in default CA certificates, the user can disable any of those certificates through the user 

interface so that certificates issued by disabled CA’s cannot validate successfully. In addition, a user and an 

administrator/MDM can import a new trusted CA certificate into the Trust Anchor Database (the TOE stores the 

new CA certificate in the Security Key Store). 

The TOE does not establish TLS connections itself (beyond EAP-TLS used for WPA2/WPA3 Wi-Fi connections), but 

provides a series of APIs that mobile applications can use to check the validity of a peer certificate. The mobile 

application, after correctly using the specified APIs, can be assured as to the validity of the peer certificate and be 

assured that the TOE will not establish the trusted connection if the peer certificate cannot be verified (including 

validity, certification path, and revocation [through OCSP]). If, during the process of certificate verification, the TOE 

cannot establish a connection with the server acting as the OCSP Responder, the TOE will not deem the server’s 

certificate as valid and will not establish a TLS connection with the server. 

The user or administrator explicitly specifies the trusted CA that the TOE will use for EAP-TLS authentication of the 

server’s certificate. For mobile applications, the application developer will specify whether the TOE should use the 

Android system Trusted CAs, use application-specified trusted CAs, or a combination of the two. In this way, the 

TOE always knows which trusted CAs to use. 

The TOE, when acting as a WPA2/WPA3 supplicant uses X.509 certificates for EAP-TLS authentication. Because the 

TOE may not have network connectivity to a revocation server prior to being admitted to the WPA2/WPA3 

network and because the TOE cannot determine the IP address or hostname of the authentication server (the Wi-

Fi access point proxies the supplicant’s authentication request to the server), the TOE will accept the certificate of 

the server. 

Component Guidance Assurance Activities: If not already present in the TSS, the evaluator shall check the 

administrative guidance to ensure that it describes how the TOE chooses which certificates to use, and any 

necessary instructions for configuring the operating environment so that the TOE can use the certificates. (TD0703 

applied) 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 132 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Section 3.6 of the Admin Guide describes the common criteria related settings. This section details the certificate 

management configuration and API. 

Section 10.3 of the Admin Guide details certificate validation for TLS and HTTPS. SecureURL is included in the 

NIAPSEC library. SecureURL automatically configures TLS and can perform certificate and host validation checking. 

At construction, SecureURL requires a reference identifier. The Admin Guide also details all associated public 

methods and APIs for certificate use, validation, and revocation. 

Component Testing Assurance Activities: Removed per TD0703. 

 

2.4.21 REQUEST VALIDATION OF CERTIFICATES  (MDFPP33:FIA_X509_EXT.3) 

 

2.4.21.1 MDFPP33:FIA_X509_EXT.3.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.4.21.2 MDFPP33:FIA_X509_EXT.3.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: The evaluator shall verify that the API documentation provided 

according to Section 5.2.2 Class ADV: Development includes the security function (certificate validation) described 

in this requirement. This documentation shall be clear as to which results indicate success and failure. 

Section 10 API specification of the Admin Guide details API’s used for configuring reference identifiers and 

validation checks. 

Component Testing Assurance Activities: The evaluator shall write, or the developer shall provide access to, an 

application that requests certificate validation by the TSF. The evaluator shall verify that the results from the 

validation match the expected results according to the API documentation. This application may be used to verify 

that import, removal, modification, and validation are performed correctly according to the tests required by 

FDP_STG_EXT.1, FTP_ITC_EXT.1, FMT_SMF.1, and FIA_X509_EXT.1. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 133 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test:  The TOE provides two APIs to verify a certificate or a chain of certificates via the NIAPSEC library.  The 

evaluator utilized these APIs in the Gossamer test applications used during FIA_X509_EXT.1 and FTP_ITC_EXT.1 

testing.  Those tests demonstrated that the TOE’s certificate validation APIs correctly detected invalid certificate 

chains. 

 

2.4.22 CERTIFICATE STORAGE AND MANAGEMENT  (WLANC10:FIA_X509_EXT.6) 

 

2.4.22.1 WLANC10:FIA_X509_EXT.6.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.4.22.2 WLANC10:FIA_X509_EXT.6.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall examine the TSS to determine that it describes all 

certificate stores implemented that contain certificates used to meet the requirements of this PP-Module. This 

description shall contain information pertaining to how certificates are loaded into the store, and how the store is 

protected from unauthorized access. 

If the TOE relies on a platform mechanism for certificate loading and storage, the evaluator shall verify that the TSS 

identifies this mechanism and describes how use of this mechanism is protected against unauthorized access. 

Section 6.4 of the ST states the TOE comes with a built-in set of default Trusted Credentials (Android's set of 

trusted CA certificates), and while the user cannot remove any of the built-in default CA certificates, the user can 

disable any of those certificates through the user interface so that certificates issued by disabled CA’s cannot 

validate successfully. In addition, a user and an administrator/MDM can import a new trusted CA certificate into 

the Trust Anchor Database (the TOE stores the new CA certificate in the Security Key Store). 

The certificates that will be used to establish EAP-TLS, TLS or HTTPS connections are stored in the key store 

specified in FCS_STG_EXT.1. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 134 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Component Guidance Assurance Activities: The evaluator shall check the administrative guidance to ensure that it 

describes how to load X.509 certificates into the TOE's certificate store, regardless of whether the TSF provides this 

mechanism itself or the TOE relies on a platform-provided mechanism for this. 

The table entry “Certificate Management” in Section 3.6 (Common Criteria Related Settings) of the Admin Guide 

explains how to import and remove certificates. The table entry “Wi-Fi Settings” in Section 3.6 explains how to 

configure certificates for Wi-Fi access. 

Component Testing Assurance Activities: The evaluator shall perform the following test for each TOE function that 

requires the use of certificates: 

Test 1: The evaluator shall demonstrate that using a certificate without a valid certification path results in the 

function failing. The evaluator shall then load any certificates needed to validate the certificate to be used in the 

function and demonstrate that the function succeeds. The evaluator shall then delete one of these dependent 

certificates and show that the function fails. 

Test 2: The evaluator shall demonstrate that the mechanism used to load or configure X.509 certificates cannot be 

accessed without appropriate authorization. 

Test 1 - This requirement has been tested in conjunction with WLANC10:FIA_X509_EXT.1/WLAN Test 1. 

Test 2 - See Test Case MDFPP33:FIA_UAU_EXT.2 where the evaluator showed that no other functions were 

allowed on the TOE while it was in the locked state (prior to authentication). See also Test Case 

MDFPP33:FMT_SMF.1 Function 11 where the evaluator demonstrated the mechanism used to load X509 

certificates. 

2.5 SECURITY MANAGEMENT (FMT) 

 

2.5.1 MANAGEMENT OF SECURITY FUNCTIONS BEHAVIOR  

(MDFPP33:FMT_MOF_EXT.1) 

 

2.5.1.1 MDFPP33:FMT_MOF_EXT.1.1 

TSS Assurance Activities: The evaluator shall verify that the TSS describes those management functions that may 

only be performed by the user and confirm that the TSS does not include an Administrator API for any of these 

management functions. This activity will be performed in conjunction with FMT_SMF.1. 

Section 6.5 of the ST states the TOE provides the management functions described in the table in 5.1.5.2 in section 

5. The table includes annotations describing the roles that have access to each service and how to access the 

service. The TOE enforces administrative configured restrictions by rejecting user configuration (through the UI) 

when attempted. It is worth noting that the TOE’S ability to specify authorized application repositories takes the 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 135 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

form of allowing enterprise applications (i.e., restricting applications to only those applications installed by an 

MDM Agent). 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.5.1.2 MDFPP33:FMT_MOF_EXT.1.2 

TSS Assurance Activities: The evaluator shall verify that the TSS describes those management functions that may 

be performed by the Administrator, to include how the user is prevented from accessing, performing, or relaxing 

the function (if applicable), and how applications/APIs are prevented from modifying the Administrator 

configuration. The TSS also describes any functionality that is affected by administrator-configured policy and how. 

This activity will be performed in conjunction with FMT_SMF.1. 

Section 6.5 of the ST states the TOE provides the management functions described in the table in 5.1.5.2 in section 

5. The table includes annotations describing the roles that have access to each service and how to access the 

service. The TOE enforces administrative configured restrictions by rejecting user configuration (through the UI) 

when attempted. It is worth noting that the TOE’S ability to specify authorized application repositories takes the 

form of allowing enterprise applications (i.e., restricting applications to only those applications installed by an 

MDM Agent). 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: Test 69: The evaluator shall use the test environment to deploy policies 

to Mobile Devices. 

Test 70: The evaluator shall create policies which collectively include all management functions which are 

controlled by the (enterprise) administrator and cannot be overridden/relaxed by the user as defined in 

FMT_MOF_EXT.1.2. The evaluator shall apply these policies to devices, attempt to override/relax each setting both 

as the user (if a setting is available) and as an application (if an API is available), and ensure that the TSF does not 

permit it. Note that the user may still apply a more restrictive policy than that of the administrator. 

Test 71: Additional testing of functions provided to the administrator are performed in conjunction with the 

testing activities for FMT_SMF.1.1. 

Test 69 - The developer provided a sample MDM application that was copied into local device storage and 

installed. The application is an MDM agent that allows the MDM APIs and functions to be performed through the 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 136 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

application UI. Once installed and enabled, the TOE device is effectively enrolled and policies can be defined and 

applied to the device. 

Test 70 – The evaluator used the MDM application to deploy policies and attempt to override settings both as a 

user (if setting was available) and as an application (if API was available).  In each case, the evaluator attempted to 

bypass the policy set by the evaluator and was unable to circumvent the MDM application policy.  Policies were 

deployed in order to restrict access to the following options: 

1. Configure password policy: 

a. minimum password length 

b. minimum password complexity 

c. maximum password lifetime 

 2. Configure session locking policy 

  a. screen-lock enabled/disabled 

  b. screen lock timeout 

  c. number of authentication failures 

3. Enable/disable the VPN protection: 

a. across device  

b. on a per-group of applications processes basis 

4. Enable/disable [NFC, Bluetooth, Wi-Fi, cellular radios] 

5. Enable/disable [microphone, camera]: 

a. across device 

c. on a per-app basis 

8. Configure application installation policy by: 

a. restricting the sources of applications   

b. denying installation of applications  

 18. Enable/disable display notification in the locked state of: 

  f. all notifications 

21. Enable/disable location services: 

a. across device 

25. Enable/disable [Bluetooth tethering] 

26. Enable/disable developer modes 

40. Enable/disable backup to [all applications] to [remote system] 

 41. Enable/disable [a. Hotspot functionality authenticated by [pre-shared key], b. USB tethering authenticated 

 by [no authentication]] 

42. Approve exceptions for sharing data between [groups of application] 
44. Unenroll the TOE from management 

 45. Enable/disable the Always-On VPN protection 

  a. across device 

WL-1. configure security policy for each wireless network [a. [specify the CA(s) from which the TSF will accept 

 WLAN authentication server certificate(s)], b. security type, c. authentication protocol, d. client credentials to 

 be used for authentication] 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 137 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

WL-2.  specify wireless networks (SSIDs) to which the TSF may connect 

WL-3. Enable/disable wireless network bridging capability (for example, bridging a connection between the 

WLAN and cellular radios to function as a hotspot) authenticated by [pre-shared key] 

 

All other restrictions are tested with MDFPP33:FMT_SMF.1. 

Test 71 – See MDFPP33:FMT_SMF.1.1 

 

2.5.2 SPECIFICATION OF MANAGEMENT FUNCTIONS  (MDFPP33:FMT_SMF.1) 

 

2.5.2.1 MDFPP33:FMT_SMF.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall verify that the TSS describes all management functions, 

what roles can perform each function, and how these functions are (or can be) restricted to the roles identified by 

FMT_MOF_EXT.1. 

The following activities are organized according to the function number in the table. These activities include TSS 

Evaluation Activities, AGD Evaluation Activities, and test activities. 

Test activities specified below shall take place in the test environment described in the evaluation activity for 

FPT_TUD_EXT.1. 

Function 1 

The evaluator shall verify the TSS defines the allowable policy options: the range of values for both password 

length and lifetime, and a description of complexity to include character set and complexity policies (e.g., 

configuration and enforcement of number of uppercase, lowercase, and special characters per password). 

Function 2 

The evaluator shall verify the TSS defines the range of values for both timeout period and number of 

authentication failures for all supported authentication mechanisms. 

Function 4 

The evaluator shall verify that the TSS includes a description of each radio and an indication of if the radio can be 

enabled/disabled along with what role can do so. In addition the evaluator shall verify that the frequency ranges at 

which each radio operates is included in the TSS. The evaluator shall verify that the TSS includes at what point in 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 138 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

the boot sequence the radios are powered on and indicates if the radios are used as part of the initialization of the 

device. 

Function 5 

The evaluator shall verify that the TSS includes a description of each collection device and an indication of if it can 

be enabled/disabled along with what role can do so. 

Function 8 

The evaluator shall verify the TSS describes the allowable application installation policy options based on the 

selection included in the ST. If the application allowlist is selected, the evaluator shall verify that the TSS includes a 

description of each application characteristic upon which the allowlist may be based. 

Function 9 & Function 10 

The evaluator shall verify that the TSS describes each category of keys or secrets that can be imported into the 

TSF's secure key storage. 

Function 12 

The evaluator shall verify that the TSS describes each additional category of X.509 certificates and their use within 

the TSF. 

Function 13 

The evaluator shall examine the TSS to ensure that it contains a description of each management function that will 

be enforced by the enterprise once the device is enrolled. 

Function 14 

The evaluator shall verify that the TSS includes an indication of what applications (e.g., user-installed applications, 

Administrator-installed applications, or Enterprise applications) can be removed along with what role can do so. 

Function 24 [conditional] 

The evaluator shall verify that the TSS includes a list of each externally accessible hardware port and an indication 

of if data transfer over that port can be enabled/disabled. 

Function 25 [conditional] 

The evaluator shall verify that the TSS describes how the TSF acts as a server in each of the protocols listed in the 

ST, and the reason for acting as a server. 

Function 29 [conditional] 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 139 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The evaluator shall verify that the TSS describes how approval for an application to perform the selected action 

(import, removal) with respect to certificates in the Trust Anchor Database is accomplished (e.g., a pop-up, policy 

setting, etc.). 

Function 31 [conditional] 

The evaluator shall ensure that the TSS describes which cellular protocols can be disabled. 

Function 34 [conditional] 

The evaluator shall verify that the TSS describes how the approval for exceptions for shared use of keys/secrets by 

multiple applications is accomplished (e.g., a pop-up, policy setting, etc.). 

Function 35 [conditional] 

The evaluator shall verify that the TSS describes how the approval for exceptions for destruction of keys/secrets by 

applications that did not import the key/secret is accomplished (e.g., a pop-up, policy setting, etc.). 

Function 36 [conditional] 

The evaluator shall verify that the TSS describes any restrictions in banner settings (e.g., character limitations). 

Function 39 [conditional] 

The evaluator shall verify that the TSS includes a description of how data transfers can be managed over USB. 

Function 40 [conditional] 

The evaluator shall verify that the TSS includes a description of available backup methods that can be 

enabled/disabled. If 'selected applications or selected groups of applications are selected the TSS shall include 

which applications of groups of applications backup can be enabled/disabled. 

Function 41 [conditional] 

The evaluator shall verify that the TSS includes a description of Hotspot functionality and USB tethering to include 

any authentication for these. 

Function 45 [conditional] 

The evaluator shall verify that the TSS contains guiance to congifure the VPN as Always-On. 

Function 46 [conditional] 

The evaluator shall verify that the TSS describes the procedure to revoke a biometric credential stored on the TOE. 

Function 47 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 140 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The evaluator shall verify that the TSS describes all assigned security management functions and their intended 

behavior. 

Section 6.5 of the ST states the TOE provides the management functions described in the table in 5.1.5.2 in section 

5. The table includes annotations describing the roles that have access to each service and how to access the 

service. The TOE enforces administrative configured restrictions by rejecting user configuration (through the UI) 

when attempted. It is worth noting that the TOE’s ability to specify authorized application repositories takes the 

form of allowing enterprise applications (i.e., restricting applications to only those applications installed by an 

MDM Agent). The evaluator ensured all the details required by the AA are included in the table with each 

associated function. 

Component Guidance Assurance Activities: The evaluator shall consult the AGD guidance to perform each of the 

specified tests, iterating each test as necessary if both the user and administrator may perform the function. The 

evaluator shall verify that the AGD guidance describes how to perform each management function, including any 

configuration details. For each specified management function tested, the evaluator shall confirm that the 

underlying mechanism exhibits the configured setting. 

Function 4 

The evaluator shall confirm that the AGD guidance describes how to perform the enable/disable function for each 

radio. 

Function 5 

The evaluator shall confirm that the AGD guidance describes how to perform the enable/disable function. 

Function 11 

The evaluator shall review the AGD guidance to determine that it describes the steps needed to import, modify, or 

remove certificates in the Trust Anchor database, and that the users that have authority to import those 

certificates (e.g., only administrator, or both administrators and users) are identified. 

Function 13 

The evaluator shall examine the AGD guidance to determine that this same information is present. 

Function 14 

The evaluator shall examine the AGD guidance to determine that it details, for each type of application that can be 

removed, the procedures necessary to remove those applications and their associated data. For the purposes of 

this Evaluation Activity, 'associated data' refers to data that are created by the app during its operation that do not 

exist independent of the app's existence, for instance, configuration data, or e-mail information that's part of an 

email client. It does not, on the other hand, refer to data such as word processing documents (for a word 

processing app) or photos (for a photo or camera app). 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 141 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Function 18 

The evaluator shall examine the AGD Guidance to determine that it specifies, for at least each category of 

information selected for Function 18, how to enable and disable display information for that type of information in 

the locked state. 

Function 24 [conditional] 

AGD guidance will describe how to perform the enable/disable function. 

Function 27 [conditional] 

The evaluator shall examine the AGD guidance to determine that it describes how to enable and disable any 

'Forgot Password', password hint, or remote authentication (to bypass local authentication mechanisms) 

capability. 

Function 29 [conditional] 

The evaluator shall also verify that the API documentation provided according to Section 5.2.2 Class ADV: 

Development includes any security functions (import, modification, or destruction of the Trust Anchor Database) 

allowed by applications. 

Function 31 [conditional] 

The evaluator shall confirm that the AGD guidance describes the procedure for disabling each cellular protocol 

identified in the TSS. 

The table in Section 3.6 (Common Criteria Related Settings) of the Admin Guide provides the Common Criteria 

Related Settings. 

• Function 4 is described in the Radio Control entry in the table and includes the APIs and settings for 

controlling access to Wi-Fi, GPS, NFC and Bluetooth. 

• Function 5 is described in the Hardware Control entry in the table and includes the API and settings for 

controlling access to the microphone and camera. 

• Function 11 is described in the Certificate Management entry in the table and includes the APIs and 

settings for importing and removing CA certificates to and from the Trust Anchor Database. 

• Function 13 is described in the TOE Management entry in the table and includes the settings instructions 

for enrolling the TOE in management. 

• Function 14 is described in the Application Control entry in the table and includes the API for uninstalling 

applications. 

• Function 18 is described in the Lockscreen entry in the table and includes the API for configuring whether 

notifications are displayed on the lockscreen. 

• Function 24 -  not applicable/not claimed in ST. 

• Function 27 – not applicable/not claimed in ST. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 142 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

• Function 29 – not applicable/not claimed in ST. 

• Function 31 – not applicable/not claimed in ST. 

Component Testing Assurance Activities: Function 1 

The evaluator shall exercise the TSF configuration as the administrator and perform positive and negative tests, 

with at least two values set for each variable setting, for each of the following: 

- Minimum password length 

- Minimum password complexity 

- Maximum password lifetime 

Function 2 

The evaluator shall exercise the TSF configuration as the administrator. The evaluator shall perform positive and 

negative tests, with at least two values set for each variable setting, for each of the following: 

- Screen-lock enabled/disabled 

- Screen lock timeout 

- Number of authentication failures (may be combined with test for FIA_AFL_EXT.1) 

Function 3 

The evaluator shall perform the following tests: 

Test 72: The evaluator shall exercise the TSF configuration to enable the VPN protection. These configuration 

actions must be used for the testing of the FDP_IFC_EXT.1.1 requirement. 

Test 73: [conditional] If 'on a per-app basis' is selected, the evaluator shall create two applications and enable one 

to use the VPN and the other to not use the VPN. The evaluator shall exercise each application (attempting to 

access network resources; for example, by browsing different websites) individually while capturing packets from 

the TOE. The evaluator shall verify from the packet capture that the traffic from the VPN-enabled application is 

encapsulated in IPsec and that the traffic from the VPN-disabled application is not encapsulated in IPsec. 

Test 74: [conditional] If 'on a per-group of applications processes basis' is selected, the evaluator shall create two 

applications and the applications shall be placed into different groups. Enable one application group to use the 

VPN and the other to not use the VPN. The evaluator shall exercise each application (attempting to access network 

resources; for example, by browsing different websites) individually while capturing packets from the TOE. The 

evaluator shall verify from the packet capture that the traffic from the application in the VPN-enabled group is 

encapsulated in IPsec and that the traffic from the application in the VPN-disabled group is not encapsulated in 

IPsec. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 143 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Function 4 

The evaluator shall ensure that minimal signal leakage enters the RF shielded enclosure (i.e. Faraday bag, Faraday 

box, RF shielded room) by performing the following steps: 

Step 1: Place the antenna of the spectrum analyzer inside the RF shielded enclosure. 

Step 2: Enable 'Max Hold' on the spectrum analyzer and perform a spectrum sweep of the frequency range 

between 300 MHz â€“ 6000 MHz, in I KHz steps (this range should encompass 802.11, 802.15, GSM, UMTS, and 

LTE). This range will not address NFC 13.56 MHz, another test should be set up with similar constraints to address 

NFC. 

If power above -90 dBm is observed, the Faraday box has too great of signal leakage and shall not be used to 

complete the test for Function 4. The evaluator shall exercise the TSF configuration as the administrator and, if not 

restricted to the administrator, the user, to enable and disable the state of each radio (e.g. Wi-Fi, cellular, NFC, 

Bluetooth). Additionally, the evaluator shall repeat the steps below, booting into any auxiliary boot mode 

supported by the device. For each radio, the evaluator shall: 

Step 1: Place the antenna of the spectrum analyzer inside the RF shielded enclosure. Configure the spectrum 

analyzer to sweep desired frequency range for the radio to be tested (based on range provided in the TSS)). The 

ambient noise floor shall be set to -110 dBm. Place the TOE into the RF shielded enclosure to isolate them from all 

other RF traffic. 

Step 2: The evaluator shall create a baseline of the expected behavior of RF signals. The evaluator shall power on 

the device, ensure the radio in question is enabled, power off the device, enable 'Max Hold' on the spectrum 

analyzer and power on the device. The evaluator shall wait 2 minutes at each Authentication Factor interface prior 

to entering the necessary password to complete the boot process, waiting 5 minutes after the device is fully 

booted. The evaluator shall observe that RF spikes are present at the expected uplink channel frequency. The 

evaluator shall clear the 'Max Hold' on the spectrum analyzer. 

Step 3: The evaluator shall verify the absence of RF activity for the uplink channel when the radio in question is 

disabled. The evaluator shall complete the following test five times. The evaluator shall power on the device, 

ensure the radio in question is disabled, power off the device, enable 'Max Hold' on the spectrum analyzer and 

power on the device. The evaluator shall wait 2 minutes at each Authentication Factor interface prior to entering 

the necessary password to complete the boot process, waiting 5 minutes after the device is fully booted. The 

evaluator shall clear the 'Max Hold' on the spectrum analyzer. If the radios are used for device initialization, then a 

spike of RF activity for the uplink channel can be observed initially at device boot. However, if a spike of RF activity 

for the uplink channel of the specific radio frequency band is observed after the device is fully booted or at an 

Authentication Factor interface it is deemed that the radio is enabled. 

Function 5 

The evaluator shall perform the following tests: 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 144 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 75: The evaluator shall exercise the TSF configuration as the administrator and, if not restricted to the 

administrator, the user, to enable and disable the state of each audio or visual collection devices (e.g. camera, 

microphone) listed by the ST author. For each collection device, the evaluator shall disable the device and then 

attempt to use its functionality. The evaluator shall reboot the TOE and verify that disabled collection devices may 

not be used during or early in the boot process. Additionally, the evaluator shall boot the device into each available 

auxiliary boot mode and verify that the collection device cannot be used. 

Test 76: [conditional] If 'on a per-app basis' is selected, the evaluator shall create two applications and enable one 

to use access the A/V device and the other to not access the A/V device. The evaluator shall exercise each 

application attempting to access the A/V device individually. The evaluator shall verify that the enabled application 

is able to access the A/V device and the disabled application is not able to access the A/V device. 

Test 77: [conditional] If 'on a per-group of applications processes basis' is selected, the evaluator shall create two 

applications and the applications shall be placed into different groups. Enable one group to access the A/V device 

and the other to not access the A/V device. The evaluator shall exercise each application attempting to access the 

A/V device individually. The evaluator shall verify that the application in the enabled group is able to access the 

A/V device and the application in the disabled group is not able to access the A/V device. 

Function 6 

The evaluator shall use the test environment to instruct the TSF, both as a user and as the administrator, to 

command the device to transition to a locked state, and verify that the device transitions to the locked state upon 

command. 

Function 7 

Test 7: The evaluator shall use the test environment to instruct the TSF, both as a user and as the administrator, to 

command the device to perform a wipe of protected data. The evaluator must ensure that this management setup 

is used when conducting the Evaluation Activities in FCS_CKM_EXT.5. 

Function 8 

The evaluator shall exercise the TSF configuration as the administrator to restrict particular applications, sources of 

applications, or application installation according to the AGD guidance. The evaluator shall attempt to install 

unauthorized applications and ensure that this is not possible. The evaluator shall, in conjunction, perform the 

following specific tests: 

Test 78: [conditional] The evaluator shall attempt to connect to an unauthorized repository in order to install 

applications. 

Test 79: [conditional] The evaluator shall attempt to install two applications (one allowlisted, and one not) from a 

known allowed repository and verify that the application not on the allowlist is rejected. The evaluator shall also 

attempt to side-load executables or installation packages via USB connections to determine that the white list is 

still adhered to. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 145 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Function 9 & Function 10 

The test of these functions is performed in association with FCS_STG_EXT.1. 

Function 11 

The evaluator shall import certificates according to the AGD guidance as the user and/or as the administrator, as 

determined by the administrative guidance. The evaluator shall verify that no errors occur during import. The 

evaluator should perform an action requiring use of the X.509v3 certificate to provide assurance that installation 

was completed properly. 

Function 12 

The evaluator shall remove an administrator-imported certificate and any other categories of certificates included 

in the assignment of function 14 from the Trust Anchor Database according to the AGD guidance as the user and as 

the administrator. 

Function 13 

The evaluator shall verify that user approval is required to enroll the device into management. 

Function 14 

The evaluator shall attempt to remove applications according to the AGD guidance and verify that the TOE no 

longer permits users to access those applications or their associated data. 

Function 15 

The evaluator shall attempt to update the TSF system software following the procedures in the AGD guidance and 

verify that updates correctly install and that the version numbers of the system software increase. 

Function 16 

The evaluator shall attempt to install an application following the procedures in the AGD guidance and verify that 

the application is installed and available on the TOE. 

Function 17 

The evaluator shall attempt to remove any Enterprise applications from the device by following the administrator 

guidance. The evaluator shall verify that the TOE no longer permits users to access those applications or their 

associated data. 

Function 18 

For each category of information listed in the AGD guidance, the evaluator shall verify that when that TSF is 

configured to limit the information according to the AGD, the information is no longer displayed in the locked 

state. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 146 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Function 19 

The evaluator shall exercise the TSF configuration as the administrator and, if not restricted to the administrator, 

the user, to enable system-wide data-at-rest protection according to the AGD guidance. The evaluator shall ensure 

that all Evaluation Activities for DAR (FDP_DAR) are conducted with the device in this configuration. 

Function 20 

The evaluator shall exercise the TSF configuration as the administrator and, if not restricted to the administrator, 

the user, to enable removable media's data-at-rest protection according to the AGD guidance. The evaluator shall 

ensure that all Evaluation Activities for DAR (FDP_DAR) are conducted with the device in this configuration. 

Function 21 

The evaluator shall perform the following tests. 

Test 80: The evaluator shall enable location services device-wide and shall verify that an application (such as a 

mapping application) is able to access the TOE's location information. The evaluator shall disable location services 

device-wide and shall verify that an application (such as a mapping application) is unable to access the TOE's 

location information. 

Test 81: [conditional] If 'on a per-app basis' is selected, the evaluator shall create two applications and enable one 

to use access the location services and the other to not access the location services. The evaluator shall exercise 

each application attempting to access location services individually. The evaluator shall verify that the enabled 

application is able to access the location services and the disabled application is not able to access the location 

services. 

Function 22 [conditional] 

The evaluator shall verify that the TSS states if the TOE supports a BAF or hybrid authentication. If the TOE does 

not include a BAF and/or hybrid authentication this test is implicitly met. 

Test 82: [conditional] If a biometric in accordance with the Biometric Enrollment and Verification, version 1.1 is 

selected in FIA_UAU.5.1, for each BAF claimed in FIA_MBV_EXT.1.1 in the Biometric Enrollment and Verification, 

version 1.1 the evaluator shall verify that the TSS describes the procedure to enable/disable the BAF. The evaluator 

shall configure the TOE to allow each supported BAF to authenticate and verify that successful authentication can 

be achieved using the BAF. The evaluator shall configure the TOE to disable the use of each supported BAF for 

authentication and confirm that the BAF cannot be used to authenticate. 

Test 83: [conditional] If 'hybrid' is selected the evaluator shall verify that the TSS describes the procedure to 

enable/disable the hybrid (biometric credential and PIN/password) authentication. The evaluator shall configure 

the TOE to allow hybrid authentication to authenticate and confirm that successful authentication can be achieved 

using the hybrid authentication. The evaluator shall configure the TOE to disable the use of hybrid authentication 

and confirm that the hybrid authentication cannot be used to authenticate. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 147 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Function 23 [conditional] 

The test of this function is performed in conjunction with FIA_X509_EXT.2.2, FCS_TLSC_EXT.1.3 in the Functional 

Package for Transport Layer Security (TLS), version 1.1. 

Function 24 [conditional] 

The evaluator shall exercise the TSF configuration to enable and disable data transfer capabilities over each 

externally accessible hardware ports (e.g. USB, SD card, HDMI) listed by the ST author. The evaluator shall use test 

equipment for the particular interface to ensure that while the TOE may continue to receive data on the RX pins, it 

is not responding to TX pins used for data transfer when they are disabled. For each disabled data transfer 

capability, the evaluator shall repeat this test by rebooting the device into the normal operational mode and 

verifying that the capability is disabled throughout the boot and early execution stage of the device. 

Function 25 [conditional] 

The evaluator shall attempt to disable each listed protocol in the assignment. The evaluator shall verify that 

remote devices can no longer access the TOE or TOE resources using any disabled protocols. 

Function 26 [conditional] 

The evaluator shall exercise the TSF configuration as the administrator and, if not restricted to the administrator, 

the user, to enable and disable any developer mode. The evaluator shall test that developer mode access is not 

available when its configuration is disabled. The evaluator shall verify the developer mode remains disabled during 

device reboot. 

Function 27 [conditional] 

For each mechanism listed in the AGD guidance that provides a 'Forgot Password' feature or other means where 

the local authentication process can be bypassed, the evaluator shall disable the feature and ensure that they are 

not able to bypass the local authentication process. 

Function 28 [conditional] 

The evaluator shall attempt to wipe Enterprise data resident on the device according to the administrator 

guidance. The evaluator shall verify that the data is no longer accessible by the user. 

Function 29 [conditional] 

The evaluator shall perform one of the following tests: 

Test 84: [conditional] If applications may import certificates to the Trust Anchor Database, the evaluator shall 

write, or the developer shall provide access to, an application that imports a certificate into the Trust Anchor 

Database. The evaluator shall verify that the TOE requires approval before allowing the application to import the 

certificate: 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 148 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

- The evaluator shall deny the approvals to verify that the application is not able to import the certificate. Failure of 

import shall be tested by attempting to validate a certificate that chains to the certificate whose import was 

attempted (as described in the evaluation activity for FIA_X509_EXT.1). 

- The evaluator shall repeat the test, allowing the approval to verify that the application is able to import the 

certificate and that validation occurs. 

Test 85: [conditional] If applications may remove certificates in the Trust Anchor Database, the evaluator shall 

write, or the developer shall provide access to, an application that removes certificates from the Trust Anchor 

Database. The evaluator shall verify that the TOE requires approval before allowing the application to remove the 

certificate: 

- The evaluator shall deny the approvals to verify that the application is not able to remove the certificate. Failure 

of removal shall be tested by attempting to validate a certificate that chains to the certificate whose removal was 

attempted (as described in the evaluation activity for FIA_X509_EXT.1). 

The evaluator shall repeat the test, allowing the approval to verify that the application is able to remove/modify 

the certificate and that validation no longer occurs. 

Function 30 [conditional] 

The test of this function is performed in conjunction with FIA_X509_EXT.2.2. 

Function 31 [conditional] 

The evaluator shall attempt to disable each cellular protocol according to the administrator guidance. The 

evaluator shall attempt to connect the device to a cellular network and, using network analysis tools, verify that 

the device does not allow negotiation of the disabled protocols. 

Function 32 [conditional] 

The evaluator shall attempt to read any device audit logs according to the administrator guidance and verify that 

the logs may be read. This test may be performed in conjunction with the evaluation activity of FAU_GEN.1. 

Function 33 [conditional] 

The test of this function is performed in conjunction with FPT_TUD_EXT.5.1. 

Function 34 [conditional] 

The test of this function is performed in conjunction with FCS_STG_EXT.1. 

Function 35 [conditional] 

The test of this function is performed in conjunction with FCS_STG_EXT.1. 

Function 36 [conditional] 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 149 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The test of this function is performed in conjunction with FTA_TAB.1. 

Function 37 [conditional] 

The test of this function is performed in conjunction with FAU_SEL.1. 

Function 38 [conditional] 

The test of this function is performed in conjunction with FPT_NOT_EXT.2.1. 

Function 39 [conditional] 

The evaluator shall perform the following tests based on the selections made in the table: 

Test 86: [conditional] The evaluator shall disable USB mass storage mode, attach the device to a computer, and 

verify that the computer cannot mount the TOE as a drive. The evaluator shall reboot the TOE and repeat this test 

with other supported auxiliary boot modes. 

Test 87: [conditional] The evaluator shall disable USB data transfer without user authentication, attach the device 

to a computer, and verify that the TOE requires user authentication before the computer can access TOE data. The 

evaluator shall reboot the TOE and repeat this test with other supported auxiliary boot modes. 

Test 88: [conditional] The evaluator shall disable USB data transfer without connecting system authentication, 

attach the device to a computer, and verify that the TOE requires connecting system authentication before the 

computer can access TOE data. The evaluator shall then connect the TOE to another computer and verify that the 

computer cannot access TOE data. The evaluator shall then connect the TOE to the original computer and verify 

that the computer can access TOE data. 

Function 40 [conditional] 

If all applications is selected, the evaluator shall disable each selected backup location in turn and verify that the 

TOE cannot complete a backup. The evaluator shall then enable each selected backup location in turn and verify 

that the TOE can perform a backup. 

If selected applications is selected, the evaluator shall disable each selected backup location in turn and verify that 

for the selected application the TOE prevents backup from occurring. The evaluator shall then enable each 

selected backup location in turn and verify that for the selected application the TOE can perform a backup. 

If selected groups of applications is selected, the evaluator shall disable each selected backup location in turn and 

verify that for a group of applications the TOE prevents the backup from occurring. The evaluator shall then enable 

each selected backup location in turn and verify for the group of application the TOE can perform a backup. 

If configuration data is selected, the evaluator shall disable each selected backup location in turn and verify that 

the TOE prevents the backup of configuration data from occurring. The evaluator shall then enable each selected 

backup location in turn and verify that the TOE can perform a backup of configuration data. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 150 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Function 41 [conditional] 

The evaluator shall perform the following tests based on the selections in Function 41. 

Test 89: [conditional] The evaluator shall enable hotspot functionality with each of the of the support 

authentication methods. The evaluator shall connect to the hotspot with another device and verify that the 

hotspot functionality requires the configured authentication method. 

Test 90: [conditional] The evaluator shall enable USB tethering functionality with each of the of the support 

authentication methods. The evaluator shall connect to the TOE over USB with another device and verify that the 

tethering functionality requires the configured authentication method. 

Function 42 [conditional] 

The test of this function is performed in conjunction with FDP_ACF_EXT.1.2. 

Function 43 [conditional] 

The evaluator shall set a policy to cause a designated application to be placed into a particular application group. 

The evaluator shall then install the designated application and verify that it was placed into the correct group. 

Function 44 [conditional] 

The evaluator shall attempt to unenroll the device from management and verify that the steps described in 

FMT_SMF.2.1 are performed. This test should be performed in conjunction with the FMT_SMF.2.1 evaluation 

activity. 

Function 45 [conditional] 

The evaluator shall configure the VPN as Always-On and perform the following tests: 

Test 91: The evaluator shall verify that when the VPN is connected all traffic is routed through the VPN. This test is 

performed in conjunction with FDP_IFC_EXT.1.1. 

Test 92: The evaluator shall verify that when the VPN is not established, that no traffic leaves the device. The 

evaluator shall ensure that the TOE has network connectivity and that the VPN is established. The evaluator shall 

use a packet sniffing tool to capture the traffic leaving the TOE. The evaluator shall disable the VPN connection on 

the server side. The evaluator shall perform actions with the device such as navigating to websites, using provided 

applications, and accessing other Internet resources and verify that no traffic leaves the device. 

Test 93: The evaluator shall verify that the TOE has network connectivity and that the VPN is established. The 

evaluator shall disable network connectivity (i.e. Airplane Mode) and verify that the VPN disconnects. The 

evaluator shall re-establish network connectivity and verify that the VPN automatically reconnects. 

Function 46 [conditional] 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 151 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The evaluator shall configure the TOE to use BAF and confirm that the biometric can be used to authenticate to the 

device. The evaluator shall revoke the biometric credential's ability to authenticate to the TOE and confirm that 

the same BAF cannot be used to authenticate to the device. 

Function 47 

The evaluator shall design and perform tests to demonstrate that the function may be configured and that the 

intended behavior of the function is enacted by the TOE. 

Function 1 - See the test case for FIA_PMG_EXT.1 where the evaluator tested with the password length configured 

to 16 characters and verified it was enforced. The evaluator also configured password minimum of 8 and 

complexity here and ensured it was also enforced. The evaluator configured a password expiration time to ensure 

the password expired after the configured timeframe. 

Function 2 – The TOE does not offer explicit options for enabling and disabling screen-lock, however enforcing a 

screen lock timeout value effectively enforces this to be enabled. The evaluator restricted the maximum screen 

timeout to 5 minutes and then verified that the screen lock and display timeout limits were restricted to no more 

than 5 minutes.  The evaluator then disallowed screen timeout config and then confirmed that the action is no 

longer allowed to the user. See also test case for FTA_SSL_EXT.1, Test 108 where session timeout limits of 2 and 4 

minutes are tested, showing that the TOE does in fact lock after those periods of inactivity.  The evaluator 

configured the device for a maximum nu8mber of authentication failures of 5 and then proceeded to incorrectly 

authenticate 5 times to ensure the phone would automatically wipe. Prior to the last attempt, the evaluator 

rebooted the phone to ensure that this counter did not reset upon reboot.  The evaluator tested a second value 

for this setting under FIA_AFL_EXT.1 test 41 

Function 3  

Test 72 – Configured VPN protection and verified it can only be modified when allowed by the MDM agent. 

Test 73 – Not claimed 

Test 74 – Configured and enabled a VPN connection on the base profile.  The evaluator verified through UI and a 

packet capture that the VPN is not available to the secondary, work profile. 

Function 4 – The evaluators used a spectrum analyzer to look for Wifi, Bluetooth, NFC, and cellular signals when 

the radios were turned off.   The evaluator then turned off each protocol and ensured the signals no longer 

existed.  The evaluator observed signals with radios enabled and then observed (with the same configuration) the 

signals are absent when the radio is disabled.   

Function 5 –  

Test 75 - With the microphone enabled and usable, the evaluator used an MDM test application to individually 

disallow access to the camera and microphone access across the device as the administrator.  With each disabled, 

the evaluator rebooted the phone before confirming that each was disabled across the device and no longer 

usable.  The evaluator attempted to gain access to either service while disabled during early-boot and auxiliary 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 152 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

modes, however found that there was no way to access either service with or without administrator restrictions 

prior to the phone fully booting in its normal operational mode. 

Test 76 - The evaluator installed two variants of the same application.  Using the Settings UI, the evaluator granted 

Microphone and Camera permissions to one application and not the either. Only the version of the application was 

allowed to access both the camera and microphone 

Test 77 – Not claimed 

Function 6 – The evaluator used the MDM test application to lock the TOE as administrator. See Test Case 

MDFPP33:FTA_SSL_EXT.1, Test 109 where the TOE was locked by the user. 

Function 7- The evaluator wiped the device using the MDM application. See Test Case FCS_CKM_EXT.5, Test 7 

where the evaluator wiped the TOE as a device user and confirmed the TOE was actually wiped.  

Function 8,  

Test 78/79  – With all application repositories enabled, the evaluator ensured that both Playstore-signed 

applications and non-Playstore- (developer-)signed applications could be installed. The evaluator further 

confirmed with the settings app that installation from unknown sources was allowed. The evaluator then 

Disallowed installation from unknown sources and tried to install both apps again and found that Playstore-signed 

applications could still be installed, however the TOE did not allow for a developer-signed application to be 

installed..  Next, the evaluator reset all administrator configurations and confirmed an application could be 

installed by the user. The evaluator then used an MDM sample app to use the "Disallow install apps" function to 

disallow installation.  After restricting installation, the evaluator attempted to reinstall the same application and 

found it was disallowed by administrator.  The evaluator attempted to circumvent the restriction by sideloading 

the application through ADB, but also found that process failed.  

Function 9 – The description in MDFPP33:FCS_STG_EXT.1 discusses the secret keys that can be imported into the 

secure key storage. See Test Case MDFPP33:FCS_STG_EXT.1, Test 29. 

Function 10 – See Test Case MDFPP33:FCS_STG_EXT.1, Test 29. 

Function 11 – The evaluator imported a certificate into the Trust Anchor database and removed a certificate from 

the database as a user and also using the MDM application.  Certificates are repeatedly installed and used over the 

course of testing and the evaluator never encountered any issues using a configured certificate.  

Function 12 - See Function 11 – the evaluator removed imported X509 certificates both as an administrator and as 

a user, and then confirmed that the certificates had actually been removed from the TOE. 

Function 13 – The evaluator installed the MDM test application and enabled administration. This effectively enrolls 

the TOE.  Note that the MDM test application is essentially an MDM agent application that provides direct access 

to the MDM accessible functions rather than requiring some remote communication protocols. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 153 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Function 14 - See Test MDFPP33:FMT_SMF.1 Function 8, Test 78/79 where applications are installed and removed 

repeatedly by the user.  The evaluator identified an application and removed it using the administrator interface.  

The evaluator checked the Application Manager to ensure it was no longer evident on the TOE.  

Function 15 - See the test cases for MDFPP33:FPT_TUD_EXT.1.  

Function 16 - See Test Case MDFPP33:FMT_SMF.1 Function 8, Test 78/79.  The evaluator installed an application 

using the MDM test application and confirmed in the Application Manager that it was installed.  

Function 17 - See Function 14 where applications are removed both as an administrator and as a user and shown 

to be no longer accessible. There is no distinction between mobile and enterprise applications. 

Function 18 - The evaluator locked the TOE and observed a number of notifications from previous device usage. 

The evaluator then configured the TOE to display no notifications when locked. The evaluator locked the device 

once again and found no evidence of any notifications. The evaluator then used the MDM to enable and disable 

notifications. 

Function 19 - The current version of Android is always encrypted, although it can be configured whether to require 

a password upon rebooting. 

Function 20 – Not Applicable as the TOE in its evaluated mode does not support removable media.   

Function 21 –  

Test 80- The evaluator ensured location services were on and could be used. The evaluator then turned off 

location services to see they could not be used. The evaluator turned the location services back on and then 

disabled them as the administrator - disabled all location services.  The evaluator then observed that location 

services were disabled and could not be turned on.   

Test 81 – Function not claimed. 

Function 22 – Not applicable.  Multiple authentication methods not claimed. 

Function 23 –Not applicable. 

Function 24 – Not applicable 

Function 25 - The TOE supports Bluetooth tethering. The evaluator turned on Bluetooth tethering and ensured that 

a connection could be made (Bluetooth pairing).  The evaluator then disabled the protocol and found that the 

remote device could no longer access the TOE or the TOE resource. 

Function 26- See Test MDFPP33:FMT_MOF_EXT.1 Test 70 – Function 26 where developer mode is tested to show it 

can be enabled/disabled by the user and restricted/unrestricted by the administrator. The evaluator disabled 

developer mode, restarted the device and confirmed that developer mode was still not available.    

Function 27 – Not applicable 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 154 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Function 28 – The evaluator wiped the Enterprise data from the device and then confirmed via the display that it 

was wiped. 

Function 29 – Not applicable. 

Function 30 – Not applicable 

Function 31 – Not applicable 

Function 32 –The evaluator used TestDPC to ensure that the MDM Agent could read the security logs. 

Function 33 – Not applicable 

Function 34 – Not applicable 

Function 35 – Not applicable 

Function 36 – See the testing activity for MDFPP33:FTA_TAB.1. 

Function 37 – Not applicable 

Function 38 – Not applicable 

Function 39 –  

Test 86 - The evaluator enabled USB mass storage and verified it was available. The evaluator then used TestDPC 

to disable USB mass storage (and verified the setting via the phone’s settings) and verified that mass storage was 

not available. The evaluator then rebooted each TOE device into recovery mode and found the devices were not 

accessible. 

Test 87 – Not applicable 

Test 88 – Not applicable 

Function 40 – First, the evaluator verified that backup services were available when configured. Next, the evaluator 

used the test MDM app to disable backup services and showed that the user's ability to configure remote backup 

services was disabled 

Function 41 

Test 89/90 – The evaluator tested this along with the other tethering protocols under Function 25. The TOE 

supports two additional types of tethering under this function: Wi-Fi and USB. The evaluator turned on each type 

of tethering and ensured that a connection could be made (Wi-Fi or USB pairing).  The evaluator then disabled the 

protocol and found that the remote device could no longer access the TOE or the TOE resource. 

Function 42 - The test of this function is performed in conjunction with MDFPP33:FDP_ACF_EXT.1.2. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 155 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Function 43 - Not applicable. 

Function 44– See test case FMT_SMF_EXT.2.1 where the TOE is unenrolled from management 

Function 45 –  

Test 91 - The evaluator configured the VPN as Always-On function.  This test is performed in conjunction with 

MDFPP33:FDP_IFC_EXT.1.1.  

Test 92 - The evaluator verified that, when the VPN is not established but Always-on-VPN is enabled, no traffic is 

able to leave the device. The evaluator did so by first establishing the VPN connection and verified all traffic was 

encrypted and websites could be reached. Then, the evaluator disabled the VPN from the server side and verified 

no traffic left the device.  

Test 93 – The evaluator connected the TOE to a VPN GW.  After the VPN connection was established and 

configured to be Always-on, the evaluator verified the connection to the configured VPN addresses.  The evaluator 

then enabled airplane mode and tested the same connections to find the TOE could no longer access the VPN 

connection.  The evaluator turned off airplane mode and found that the TOE automatically reconnected to the VPN 

network. 

Function 46 – Not applicable 

Function 47 – Not applicable 

 

2.5.3 SPECIFICATION OF MANAGEMENT FUNCTIONS  (BT10:FMT_SMF_EXT.1/BT) 

 

2.5.3.1 BT10:FMT_SMF_EXT.1.1/BT 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall ensure that the TSS includes a description of the 

Bluetooth profiles and services supported and the Bluetooth security modes and levels supported by the TOE. 

If function BT-4, 'Allow/disallow additional wireless technologies to be used with Bluetooth,' is selected, the 

evaluator shall verify that the TSS describes any additional wireless technologies that may be used with Bluetooth, 

which may include Wi-Fi with Bluetooth High Speed and/or NFC as an Out of Band pairing mechanism. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 156 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

If function BT-5, 'Configure allowable methods of Out of Band pairing (for BR/EDR and LE),' is selected, the 

evaluator shall verify that the TSS describes when Out of Band pairing methods are allowed and which ones are 

configurable. 

If function BT-8, 'Disable/enable the Bluetooth services and/or profiles available on the OS (for BR/EDR and LE),' is 

selected, the evaluator shall verify that all supported Bluetooth services are listed in the TSS as manageable and, if 

the TOE allows disabling by application rather than by service name, that a list of services for each application is 

also listed. 

If function BT-9, 'Specify minimum level of security for each pairing (for BR/EDR and LE),' is selected, the evaluator 

shall verify that the TSS describes the method by which the level of security for pairings are managed, including 

whether the setting is performed for each pairing or is a global setting. 

Section 6.5 of the ST states the TOE provides the management functions described in the table in 5.1.5.3 in section 

5. The TOE enforces administrative configured restrictions by rejecting user configuration (through the UI) when 

attempted. 

Component Guidance Assurance Activities: The evaluator shall ensure that the management functions defined in 

the PP-Module are described in the guidance to the same extent required for the Base-PP management functions. 

Section 4 of the Admin Guide explains how to use Bluetooth.  It is the same level of detail as other management 

functions. 

Component Testing Assurance Activities: The evaluator shall use a Bluetooth-specific protocol analyzer to perform 

the following tests: 

Test 1: The evaluator shall disable the Discoverable mode and shall verify that other Bluetooth BR/EDR devices 

cannot detect the TOE. The evaluator shall use the protocol analyzer to verify that the TOE does not respond to 

inquiries from other devices searching for Bluetooth devices. The evaluator shall enable Discoverable mode and 

verify that other devices can detect the TOE and that the TOE sends response packets to inquiries from searching 

devices. 

The following tests are conditional on if the corresponding function is included in the ST: 

Test 2: (conditional): The evaluator shall examine Bluetooth traffic from the TOE to determine the current 

Bluetooth device name, change the Bluetooth device name, and verify that the Bluetooth traffic from the TOE lists 

the new name. The evaluator shall examine Bluetooth traffic from the TOE to determine the current Bluetooth 

device name for BR/EDR and LE. The evaluator shall change the Bluetooth device name for LE independently of the 

device name for BR/EDR. The evaluator shall verify that the Bluetooth traffic from the TOE lists the new name. 

Test 3: (conditional): The evaluator shall disable Bluetooth BR/EDR and enable Bluetooth LE. The evaluator shall 

examine Bluetooth traffic from the TOE to confirm that only Bluetooth LE traffic is present. The evaluator shall 

repeat the test with Bluetooth BR/EDR enabled and Bluetooth LE disabled, confirming that only Bluetooth BR/EDR 

is present. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 157 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 4: (conditional): For each additional wireless technology that can be used with Bluetooth as claimed in the ST, 

the evaluator shall revoke Bluetooth permissions from that technology. If the set of supported wireless 

technologies includes Wi-Fi, the evaluator shall verify that Bluetooth High Speed is not able to send Bluetooth 

traffic over Wi-Fi when disabled. If the set of supported wireless technologies includes NFC, the evaluator shall 

verify that NFC cannot be used for pairing when disabled. For any other supported wireless technology, the 

evaluator shall verify that it cannot be used with Bluetooth in the specified manner when disabled. The evaluator 

shall then re-enable all supported wireless technologies and verify that all functionality that was previously 

unavailable has been restored. 

Test 5: (conditional): The evaluator shall attempt to pair using each of the Out of Band pairing methods, verify that 

the pairing method works, iteratively disable each pairing method, and verify that the pairing method fails. 

Test 6: (conditional): The evaluator shall enable Advertising for Bluetooth LE, verify that the advertisements are 

captured by the protocol analyzer, disable Advertising, and verify that no advertisements from the device are 

captured by the protocol analyzer. 

Test 7: (conditional): The evaluator shall enable Connectable mode and verify that other Bluetooth devices may 

pair with the TOE and (if the devices were bonded) reconnect after pairing and disconnection. For BR/EDR devices: 

The evaluator shall use the protocol analyzer to verify that the TOE responds to pages from the other devices and 

permits pairing and re-connection. The evaluator shall disable Connectable mode and verify that the TOE does not 

respond to pages from remote Bluetooth devices, thereby not permitting pairing or re-connection. For LE: The 

evaluator shall use the protocol analyzer to verify that the TOE sends connectable advertising events and responds 

to connection requests. The evaluator shall disable Connectable mode and verify that the TOE stops sending 

connectable advertising events and stops responding to connection requests from remote Bluetooth devices. 

Test 8: (conditional): For each supported Bluetooth service and/or profile listed in the TSS, the evaluator shall 

verify that the service or profile is manageable. If this is configurable by application rather than by service and/or 

profile name, the evaluator shall verify that a list of services and/or profiles for each application is also listed. 

Test 9: (conditional): The evaluator shall allow low security modes/levels on the TOE and shall initiate pairing with 

the TOE from a remote device that allows only something other than Security Mode 4/Level 3 or Security Mode 

4/Level 4 (for BR/EDR), or Security Mode 1/Level 3 (for LE). (For example, a remote BR/EDR device may claim 

Input/Output capability 'NoInputNoOutput' and state that man-in-the- middle (MiTM) protection is not required. A 

remote LE device may not support encryption.) The evaluator shall verify that this pairing attempt succeeds due to 

the TOE falling back to the low security mode/level. The evaluator shall then remove the pairing of the two 

devices, prohibit the use of low security modes/levels on the TOE, then attempt the connection again. The 

evaluator shall verify that the pairing attempt fails. With the low security modes/levels disabled, the evaluator 

shall initiate pairing from the TOE to a remote device that supports Security Mode 4/Level 3 or Security Mode 

4/Level 4 (for BR/EDR) or Security Mode 1/Level 3 (for LE). The evaluator shall verify that this pairing is successful 

and uses the high security mode/level. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 158 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 1 – The evaluator first turned-on discoverable mode and demonstrated the device could be seen by other 

devices.  The evaluator then disabled discovery mode and attempted to scan once again and found that no TOE 

devices could be discovered and the UI reported that discoverable mode was not allowed. 

Test 2 – Not applicable. 

Test 3 – Not applicable 

Test 4 – Not applicable. 

Test 5 – Not applicable 

Test 6 – Not applicable 

Test 7 – Not applicable 

Test 8 – Not applicable 

Test 9 – Not applicable 

 

2.5.4 SPECIFICATION OF MANAGEMENT FUNCTIONS (WLAN CLIENT) - PER TD0667  

(WLANC10:FMT_SMF_EXT.1/WLAN) 

 

2.5.4.1 WLANC10:FMT_SMF_EXT.1.1/WLAN 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: The evaluator shall check to make sure that every management 

function mandated by the EP is described in the operational guidance and that the description contains the 

information required to perform the management duties associated with the management function. 

Section 3.6 of the Admin Guide details the Common Criteria Related Settings related to wireless management. The 

table contains descriptions, APIs, and configuration/use of the Common Criteria security function 

Component Testing Assurance Activities: The evaluator shall test the TOE's ability to provide the management 

functions by configuring the TOE and testing each option listed in the requirement above. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 159 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Note that the testing here may be accomplished in conjunction with the testing of other requirements, such as 

FCS_TLSC_EXT and FTA_WSE_EXT. 

See Test Case MDFPP33:FMT_MOF_EXT.1-70-WL-1, Test Case MDFPP33:FMT_MOF_EXT.1-70-WL-2, and Test Case 

MDFPP33:FMT_MOF_EXT.1-70-WL-3 where both pre-shared key and EAP-TLS WLAN connections are tested in 

terms of administrator restrictions and capabilities. Those results show that WLAN client connections support the 

configuration of CA, security type, authentication protocol, and client credential for specific SSIDs. See Test Case 

MDFPP33:FMT_MOF_EXT.1-70-WL-3 for a test of restricting the bridging capability of the device. 

 

2.5.5 SPECIFICATION OF REMEDIATION ACTIONS  (MDFPP33:FMT_SMF_EXT.2) 

 

2.5.5.1 MDFPP33:FMT_SMF_EXT.2.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall verify that the TSS describes all available remediation 

actions, when they are available for use, and any other administrator-configured triggers. The evaluator shall verify 

that the TSS describes how the remediation actions are provided to the administrator. 

Section 6.5 of the ST states the TOE offers MDM agents the ability to wipe protected data, wipe sensitive data, 

remove Enterprise applications, and remove all device stored Enterprise resource data upon un-enrollment. The 

TOE offers MDM agents the ability to wipe protected data (effectively wiping the device) at any time. Similarly, the 

TOE also offers the ability to remove Enterprise applications and a full wipe of managed profile data of the TOE’s 

Enterprise data/applications at any time. These capabilities are available as APIs that can be set through the MDM 

and then passed to the MDM agent to apply (and start the action as specified). 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The evaluator shall use the test environment to iteratively configure the 

device to perform each remediation action in the selection. The evaluator shall configure the remediation action 

per how the TSS states it is provided to the administrator. The test environment could be a MDM agent 

application, but can also be an application with administrator access. 

Test – The evaluator used the MDM test application to unenroll the device.  For wipe upon unenrollment, see test 

FMT_SMF.1, Test 7 where the evaluator shows the device can be wiped by and administrator.  See 

FCS_CKM_EXT.5 which shows that the user can wipe the device and FIA_AFL_EXT.1 which shows that the device 

will be wiped as a result of reaching the maximum number of authentication failures limit. In the case of wiping 

sensitive data, there is no specific function to do that, but performing a wipe of protected data also results in a 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 160 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

wipe of sensitive data. In the cases of both wiping the device and removing Enterprise apps, if an MDM were to 

unenroll a mobile device it can certainly instruct its agent(s) to perform any available administrator functions 

immediately prior to the final unenrollment or incidentally resulting in unenrollment (in the case of instructing a 

wipe).  As such Test FMT_SMF.1, Test 7 and Test FMT_SMF.1, Test 28 serve to show that the device (protected and 

sensitive data) could be wiped and enterprise applications can be removed as a result of unenrollment as claimed. 

 

2.5.6 CURRENT ADMINISTRATOR  (MDFPP33:FMT_SMF_EXT.3) 

 

2.5.6.1 MDFPP33:FMT_SMF_EXT.3.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The evaluator shall cause the TOE to be enrolled into management. The 

evaluator shall then invoke this mechanism and verify the ability to view that the device has been enrolled, view 

the management functions that the administrator is authorized to perform. 

Test – The evaluator enrolled the TOE in the management service using the developer provided MDM application.  

In order for the application to administer management policies, the evaluator had to enable the administrator 

privileges for this application. Using the MDM application, the evaluator was able to see what policies are currently 

in effect as well as issue new policies.  To see a full list of permissions granted to the administrator application, the 

evaluator used the Settings application. 

2.6 PROTECTION OF THE TSF (FPT) 

 

2.6.1 APPLICATION ADDRESS SPACE LAYOUT RANDOMIZATION  

(MDFPP33:FPT_AEX_EXT.1) 

 

2.6.1.1 MDFPP33:FPT_AEX_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 161 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Testing Assurance Activities: None Defined 

 

2.6.1.2 MDFPP33:FPT_AEX_EXT.1.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall ensure that the TSS section of the ST describes how the 8 

bits are generated and provides a justification as to why those bits are unpredictable. 

Section 6.6 of the ST states the Linux kernel of the TOE’s Android operating system provides address space layout 

randomization utilizing the get_random_int(void) kernel random function to provide eight unpredictable bits to 

the base address of any user-space memory mapping. The random function, though not cryptographic, ensures 

that one cannot predict the value of the bits. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: Evaluation Activity Note: The following test require the developer to 

provide access to a test platform that provides the evaluator with tools that are typically not found on consumer 

Mobile Device products. 

Test 94: The evaluator shall select 3 apps included with the TSF. These must include any web browser or mail client 

included with the TSF. For each of these apps, the evaluator shall launch the same app on two separate Mobile 

Devices of the same type and compare all memory mapping locations. The evaluator must ensure that no memory 

mappings are placed in the same location on both devices. 

If the rare (at most 1/256) chance occurs that two mappings are the same for a single app and not the same for the 

other two apps, the evaluator shall repeat the test with that app to verify that in the second test the mappings are 

different. 

Test 94 – The evaluator had 2 devices of each type to perform this test.  The evaluator chose the email, settings, 

and chrome applications to perform this test.  The evaluator started the matching apps on each device and 

performed a memory map of each device.  The evaluator then used a test program to compare the memory 

locations of each app on each device. The mapping for each app was different on each device. 

 

2.6.2 MEMORY PAGE PERMISSIONS  (MDFPP33:FPT_AEX_EXT.2) 

 

2.6.2.1 MDFPP33:FPT_AEX_EXT.2.1 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 162 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall ensure that the TSS describes of the memory 

management unit (MMU), and ensures that this description documents the ability of the MMU to enforce read, 

write, and execute permissions on all pages of virtual memory. 

Section 6.6 of the ST explains the TOE utilizes 5.4, and 4.19 Linux kernels 

(https://source.android.com/devices/architecture/kernel/modular-kernels#core-kernel-requirements), whose 

memory management unit (MMU) enforces read, write, and execute permissions on all pages of virtual memory 

and ensures that write and execute permissions are not simultaneously granted on all memory. The Android 

operating system (as of Android 2.3) sets the ARM No eXecute (XN) bit on memory pages and the TOE’S ARMv8 

Application Processor’s Memory Management Unit (MMU) circuitry enforces the XN bits. From Android’s 

documentation (https://source.android.com/devices/tech/security/index.html), Android 2.3 forward supports 

'Hardware-based No eXecute (NX) to prevent code execution on the stack and heap'.  Section D.5 of the ARMv8 

Architecture Reference Manual contains additional details about the MMU of ARM-based processors: 

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.f/index.html.. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.6.3 STACK OVERFLOW PROTECTION  (MDFPP33:FPT_AEX_EXT.3) 

 

2.6.3.1 MDFPP33:FPT_AEX_EXT.3.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall determine that the TSS contains a description of 

stackbased buffer overflow protections implemented in the TSF software which runs in the non-privileged 

execution mode of the application processor. The exact implementation of stack-based buffer overflow protection 

will vary by platform. Example implementations may be activated through compiler options such as '-fstack-

protector-all', '-fstack-protector', and '/GS' flags. The evaluator shall ensure that the TSS contains an inventory of 

TSF binaries and libraries, indicating those that implement stack-based buffer overflow protections as well as those 

that do not. The TSS must provide a rationale for those binaries and libraries that are not protected in this manner. 

https://source.android.com/devices/architecture/kernel/modular-kernels#core-kernel-requirements
https://source.android.com/devices/tech/security/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.f/index.html


 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 163 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Section 6.6 of the ST states the TOE’s Android operating system provides explicit mechanisms to prevent stack 

buffer overruns in addition to taking advantage of hardware-based No eXecute to prevent code execution on the 

stack and heap. Specifically, the vendor builds the TOE (Android and support libraries) using gcc-fstack-protector 

compile option to enable stack overflow protection and Android takes advantage of hardware-based eXecute-

Never to make the stack and heap non-executable. The vendor applies these protections to all TSF executable 

binaries and libraries. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.6.4 DOMAIN ISOLATION  (MDFPP33:FPT_AEX_EXT.4) 

 

2.6.4.1 MDFPP33:FPT_AEX_EXT.4.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.6.4.2 MDFPP33:FPT_AEX_EXT.4.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall ensure that the TSS describes the mechanisms that are in 

place that prevents non-TSF software from modifying the TSF software or TSF data that governs the behavior of 

the TSF. These mechanisms could range from hardware-based means (e.g. 'execution rings' and memory 

management functionality); to software-based means (e.g. boundary checking of inputs to APIs). The evaluator 

determines that the described mechanisms appear reasonable to protect the TSF from modification. 

The evaluator shall ensure the TSS describes how the TSF ensures that the address spaces of applications are kept 

separate from one another. 

The evaluator shall ensure the TSS details the USSD and MMI codes available from the dialer at the locked state or 

during auxiliary boot modes that may alter the behavior of the TSF. The evaluator shall ensure that this description 

includes the code, the action performed by the TSF, and a justification that the actions performed do not modify 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 164 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

user or TSF data. If no USSD or MMI codes are available, the evaluator shall ensure that the TSS provides a 

description of the method by which actions prescribed by these codes are prevented. 

The evaluator shall ensure the TSS documents any TSF data (including software, execution context, configuration 

information, and audit logs) which may be accessed and modified over a wired interface in auxiliary boot modes. 

The evaluator shall ensure that the description includes data, which is modified in support of update or restore of 

the device. The evaluator shall ensure that this documentation includes the auxiliary boot modes in which the data 

may be modified, the methods for entering the auxiliary boot modes, the location of the data, the manner in which 

data may be modified, the data format and packaging necessary to support modification, and software and/or 

hardware tools, if any, which are necessary for modifying the data. 

The evaluator shall ensure that the TSS provides a description of the means by which unauthorized and undetected 

modification (that is, excluding cryptographically verified updates per FPT_TUD_EXT.2) of the TSF data over the 

wired interface in auxiliary boots modes is prevented. The lack of publicly available tools is not sufficient 

justification. Examples of sufficient justification include auditing of changes, cryptographic verification in the form 

of a digital signature or hash, disabling the auxiliary boot modes, and access control mechanisms that prevent 

writing to files or flashing partitions. 

Section 6.6 of the ST explains the TOE protects itself from modification by untrusted subjects using a variety of 

methods. The first protection employed by the TOE is a Secure Boot process that uses cryptographic signatures to 

ensure the authenticity and integrity of the bootloader and kernels using data fused into the device processor. 

The TOE protects its REK by limiting access to only trusted applications within the TEE (Trusted Execution 

Environment). The TOE key manager includes a TEE module which utilizes the REK to protect all other keys in the 

key hierarchy. All TEE applications are cryptographically signed, and when invoked at runtime (at the behest of an 

untrusted application), the TEE will only load the trusted application after successfully verifying its cryptographic 

signature. 

Additionally, the TOE’S Android operating system provides 'sandboxing' that ensures that each third-party mobile 

application executes with the file permissions of a unique Linux user ID, in a different virtual memory space. This 

ensures that applications cannot access each other’s memory space or files and cannot access the memory space or 

files of other applications (notwithstanding access between applications with a common application developer). 

The TOE has a locked bootloader, which restricts a user to installing a new software image through the Zebra’s 

proscribed OTA (Over The Air) methods.  The TOE allows an operator to download and install an OTA update through 

the system settings (Settings->System->Advanced->System update->Check for update) while the phone is fully 

booted, or by separately downloading an OTA image, and then “sideloading via ADB” the OTA update from Android’s 

recovery mode.  In both cases, the TOE will verify the digital signature of the new OTA before applying the new 

firmware. 

No USSD nor MMI codes are available to be used while the phone is in the locked state. The user can only be 

presented with a dialer from the lock screen by selecting the “Emergency” button. From this dialer, the user is only 

allowed to dial a specific set of emergency phone numbers; any attempts to enter a USSD or MMI code results in a 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 165 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

pop-up message stating “Can’t call. <Phone number> is not an emergency number.” and the call is not made/the 

USSD or MMI code is not submitted. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: Evaluation Activity Note: The following tests require the vendor to 

provide access to a test platform that provides the evaluator with tools that are typically not found on consumer 

Mobile Device products. In addition, the vendor provides a list of files (e.g., system files, libraries, configuration 

files, audit logs) that make up the TSF data. This list could be organized by folders/directories (e.g., /usr/sbin, /etc), 

as well as individual files that may exist outside of the identified directories. 

Test 95: The evaluator shall create and load an app onto the Mobile Device. This app shall attempt to traverse over 

all file systems and report any locations to which data can be written or overwritten. The evaluator must ensure 

that none of these locations are part of the OS software, device drivers, system and security configuration files, key 

material, or another untrusted application's image/data. For example, it is acceptable for a trusted photo editor 

app to have access to the data created by the camera app, but a calculator application shall not have access to the 

pictures. 

Test 96: For each available auxiliary boot mode, the evaluator shall attempt to modify a TSF file of their choosing 

using the software and/or hardware tools described in the TSS. The evaluator shall verify that the modification 

fails. 

Test 95 – The evaluator traversed all files and directories on the device starting at / and identified those with write 

permission for the world. The evaluator examined the list and did not find any TSF files in the list. The evaluator used 

the list in the KMD (Section TSF Inventory) to identify the TSF files.  

The evaluator attempted to modify a protected file to show that the TOE file permissions could not be subverted.  

The evaluator attempted to change the permissions on bouncycastle.jar and was denied. The evaluator attempted 

to modify the file using vi and was unable to do so (no editor is on the device).  The evaluator then tried to overwrite 

the file and was denied since the evaluator did not have permission. 

Test 96 - The TOE does not allow access to system files in any of its boot modes, including auxiliary boot modes, to 

normal users.  The evaluator used an application in the previous test the access while the TOE was fully booted.  

The TOE does not allow applications to run in any of its other auxiliary boot modes.  Although USB debugging is 

disabled under the normal CC-evaluated configuration, the evaluator re-enabled it to show what is presented to a 

normal shell on the device while fully booted.  The evaluator used ADB to show that system files could not be 

modified while the device was fully booted.  The evaluator then attempted to modify files in the bootloader 

auxiliary mode, fastboot mode, and recovery mode and was unable to do so. The evaluator concluded that there 

was no way of modifying the system files while the TOE was in an auxiliary boot mode. 

 

2.6.5 KERNEL ADDRESS SPACE LAYOUT RANDOMIZATION  

(MDFPP33:FPT_AEX_EXT.5) 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 166 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

 

2.6.5.1 MDFPP33:FPT_AEX_EXT.5.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.6.5.2 MDFPP33:FPT_AEX_EXT.5.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall ensure that the TSS section of the ST describes how the 

bits are generated and provides a justification as to why those bits are unpredictable. 

Section 6.6 of the ST states the TOE models provide Kernel Address Space Layout Randomization (KASLR) as a 

hardening feature to randomize the location of kernel data structures at each boot, including the core kernel as a 

random physical address, mapping the core kernel at a random virtual address in the vmalloc area, loading kernel 

modules at a random virtual address in the vmalloc area, and mapping system memory at a random virtual address 

in the linear area. The entropy used to dictate the randomization is based on the hardware present within the 

phone. For ARM devices, such as the TOE, 13–25 bits of entropy are generated on boot from the DRBG in the 

Application Processor from which the starting memory address is generated. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: Evaluation Activity Note: The following test require the developer to 

provide access to a test platform that provides the evaluator with tools that are typically not found on consumer 

Mobile Device products. 

Test 133: The evaluator shall reboot the TOE six times. For each of these reboots, the evaluator shall examine 

memory mapping locations of the kernel. The evaluator must ensure that for at least five reboots the memory 

mappings are not placed in the same location on both devices. 

Test 133: The evaluator used a debug version of the TOE with a rooted shell in order to obtain access to the kernel 

memory mapping locations in a kernel statistics file.  The evaluator connected the TOE to a windows computer and 

extracted the information using adb and a series of commands provided by the vendor. The evaluator then viewed 

the memory mapping locations across 5 reboots on one of each evaluated device and confirmed the kernel was 

not loaded to the same location.  Since the 5 reboots produced passing results, the evaluator did reboot the phone 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 167 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

an additional sixth time, however the results were not analyzed since the TOE already produced sufficient 

evidence. 

2.6.6 APPLICATION PROCESSOR MEDIATION  (MDFPP33:FPT_BBD_EXT.1) 

 

2.6.6.1 MDFPP33:FPT_BBD_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall ensure that the TSS section of the ST describes at a high 

level how the processors on the Mobile Device interact, including which bus protocols they use to communicate, 

any other devices operating on that bus (peripherals and sensors), and identification of any shared resources. The 

evaluator shall verify that the design described in the TSS does not permit any BPs from accessing any of the 

peripherals and sensors or from accessing main memory (volatile and non-volatile) used by the AP. In particular, 

the evaluator shall ensure that the design prevents modification of executable memory of the AP by the BP. 

Section 6.6 of the ST states the TOE’S hardware and software architecture ensures separation of the application 

processor (AP) from the baseband or communications processor (CP) through internal controls of the TOE’S SoC, 

which contains both the AP and the CP. The AP restricts hardware access control through a protection unit that 

restricts software access from the baseband processor through a dedicated 'modem interface'. The protection unit 

combines the functionality of the Memory Protection Unit (MPU), the Register Protection Unit (RPU), and the 

Address Protection Unit (APU) into a single function that conditionally grants access by a master to a software 

defined area of memory, to registers, or to a pre-decoded address region, respectively. The modem interface 

provides a set of APIs (grouped into five categories) to enable a high-level OS to send messages to a service 

defined on the modem/baseband processor. The combination of hardware and software restrictions ensures that 

the TOE’S AP prevents software executing on the modem or baseband processor from accessing the resources of 

the application processor (outside of the defined methods, mediated by the application processor). 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.6.7 JTAG DISABLEMENT  (MDFPP33:FPT_JTA_EXT.1) 

 

2.6.7.1 MDFPP33:FPT_JTA_EXT.1.1 

TSS Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 168 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: If disable access through hardware is selected: 

The evaluator shall examine the TSS to determine the location of the JTAG ports on the TSF, to include the order of 

the ports (i.e. Data In, Data Out, Clock, etc.). 

If control access by a signing key is selected: 

The evaluator shall examine the TSS to determine how access to the JTAG is controlled by a signing key. The 

evaluator shall examine the TSS to determine when the JTAG can be accessed, i.e. what has the access to the 

signing key. 

Section 6.6 of the ST states the TOE prevents access to its processor’s JTAG interface by requiring use of a signing 

key to authenticate prior to gaining JTAG access. Only a JTAG image with the accompanying device serial number 

(which is different for each mobile device) that has been signed by the vendor’s private key can be used to access a 

device’s JTAG interface. The private key corresponds to the vendor’s RSA 2048-bit public key (a SHA-256 hash of 

which is fused into the TOE’S application processor). 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: Evaluation Activity Note: The following test requires the developer to 

provide access to a test platform that provides the evaluator with chip level access. 

If 'disable access through hardware' is selected: 

The evaluator shall connect a packet analyzer to the JTAG ports. The evaluator shall query the JTAG port for its 

device ID and confirm that the device ID cannot be retrieved. 

The developer selected 'control access by a signing key', so this test case is addressed as a TSS AA. 

 

2.6.8 KEY STORAGE  (MDFPP33:FPT_KST_EXT.1) 

 

2.6.8.1 MDFPP33:FPT_KST_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 169 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Component TSS Assurance Activities: The evaluator shall consult the TSS section of the ST in performing the 

Evaluation Activities for this requirement. 

In performing their review, the evaluator shall determine that the TSS contains a description of the activities that 

happen on power-up and password authentication relating to the decryption of DEKs, stored keys, and data. 

The evaluator shall ensure that the description also covers how the cryptographic functions in the FCS 

requirements are being used to perform the encryption functions, including how the KEKs, DEKs, and stored keys 

are unwrapped, saved, and used by the TOE so as to prevent plaintext from being written to non-volatile storage. 

The evaluator shall ensure that the TSS describes, for each power-down scenario how the TOE ensures that all keys 

in non-volatile storage are not stored in plaintext. 

The evaluator shall ensure that the TSS describes how other functions available in the system (e.g., regeneration of 

the keys) ensure that no unencrypted key material is present in persistent storage. 

The evaluator shall review the TSS to determine that it makes a case that key material is not written unencrypted 

to the persistent storage. 

Section 6.6 in the ST states that the TOE does not store any plaintext key in its internal Flash; the TOE encrypts all 

keys before storing them. This ensures that irrespective of how the TOE powers down (e.g., a user commands the 

TOE to power down, the TOE reboots itself, or battery depletes or is removed), all keys stored in the internal Flash 

are wrapped with a KEK. Please refer to section 6.2 of the TSS for further information (including the KEK used) 

regarding the encryption of keys stored in the internal Flash. As the TOE encrypts all keys stored in Flash, upon 

boot-up, the TOE presents a password authentication screen before any functionality is unlocked. Prior to the user 

authenticating with the password, all DEKs, stored keys, and data remain encrypted. Upon user authentication, the 

password is used in conjunction to the REK to decrypt all DEKs, stored keys, and data and they become available 

for use. The KMD contains the key hierarchy diagrams illustrating the operations. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.6.9 NO KEY TRANSMISSION  (MDFPP33:FPT_KST_EXT.2) 

 

2.6.9.1 MDFPP33:FPT_KST_EXT.2.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 170 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Component TSS Assurance Activities: The evaluator shall consult the TSS section of the ST in performing the 

Evaluation Activities for this requirement. The evaluator shall ensure that the TSS describes the TOE security 

boundary. The cryptographic module may very well be a particular kernel module, the Operating System, the 

Application Processor, or up to the entire Mobile Device. 

In performing their review, the evaluator shall determine that the TSS contains a description of the activities that 

happen on power-up and password authentication relating to the decryption of DEKs, stored keys, and data. 

The evaluator shall ensure that the TSS describes how other functions available in the system (e.g., regeneration of 

the keys) ensure that no unencrypted key material is transmitted outside the security boundary of the TOE. 

The evaluator shall review the TSS to determine that it makes a case that key material is not transmitted outside 

the security boundary of the TOE. 

Section 6.6 of the ST states the TOE itself (i.e., the mobile device) comprises a cryptographic module that utilizes 

cryptographic libraries including BoringSSL, application processor cryptography (which leverages AP hardware), 

and the following system-level executables that utilize KEKs: vold, wpa_supplicant, and the Android Key Store. 

1. vold and QCT’s application processor hardware provides Data-At-Rest encryption of the user data partition 
in Flash 

2. wpa_supplicant provides 802.11-2014/WPA2/WPA3 services 

3. the Android Key Store application provides key generation, storage, deletion services to mobile applications 
and to user through the UI 

The TOE ensures that plaintext key material is not exported by not allowing the REK to be exported and by 

ensuring that only authenticated entities can request utilization of the REK. Furthermore, the TOE only allows the 

system-level executables access to plaintext DEK values needed for their operation. The TSF software (the system-

level executables) protects those plaintext DEK values in memory both by not providing any access to these values 

and by clearing them when no longer needed (in compliance with FCS_CKM_EXT.4). 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.6.10 NO PLAINTEXT KEY EXPORT  (MDFPP33:FPT_KST_EXT.3) 

 

2.6.10.1 MDFPP33:FPT_KST_EXT.3.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 171 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Component TSS Assurance Activities: The ST author will provide a statement of their policy for handling and 

protecting keys. The evaluator shall check to ensure the TSS describes a policy in line with not exporting either 

plaintext DEKs, KEKs, or keys stored in the secure key storage. 

Section 6.6 of the ST states the TOE does not provide any way to export plaintext DEKs or KEKs (including all keys 

stored in the Android Key Store) as the TOE chains or directly encrypts all KEKs to the REK.  

Furthermore, the components of the device are designed to prevent transmission of key material outside the device. 

Each internal system component requiring access to a plaintext key (for example the Wi-Fi driver) must have the 

necessary precursor(s), whether that be a password from the user or file access to key in Flash (for example the 

encrypted AES key used for encryption of the Flash data partition). With those appropriate precursors, the internal 

system-level component may call directly to the system-level library to obtain the plaintext key value. The system 

library in turn requests decryption from a component executing inside the trusted execution environment and then 

directly returns the plaintext key value (assuming that it can successfully decrypt the requested key, as confirmed 

by the CCM/GCM verification) to the calling system component. That system component will then utilize that key (in 

the example, the kernel which holds the key in order to encrypt and decrypt reads and writes to the encrypted user 

data partition files in Flash).  In this way, only the internal system components responsible for a given activity have 

access to the plaintext key needed for the activity, and that component receives the plaintext key value directly from 

the system library. 

For a user’s mobile applications, those applications do not have any access to any system-level components and 

only have access to keys that the application has imported into the Android Key Store. Upon requesting access to a 

key, the mobile application receives the plaintext key value back from the system library through the Android API. 

Mobile applications do not have access to the memory space of any other mobile application so it is not possible 

for a malicious application to intercept the plaintext key value to then log or transmit the value off the device. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 

2.6.11 SELF-TEST NOTIFICATION  (MDFPP33:FPT_NOT_EXT.1) 

 

2.6.11.1 MDFPP33:FPT_NOT_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall verify that the TSS describes critical failures that may 

occur and the actions to be taken upon these critical failures. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 172 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Section 6.6 of the ST indicates that when the TOE encounters a critical failure (either a self-test failure or TOE 

software integrity verification failure), a failure message is displayed to the screen, and the TOE attempts to 

reboot. If the failure persists between boots, the user may attempt to boot to the recovery mode/kernel to wipe 

data and perform a factory reset in order to recover the device. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: Evaluation Activity Note: The following test require the developer to 

provide access to a test platform that provides the evaluator with tools that are typically not found on consumer 

Mobile Device products. 

Test 97: The evaluator shall use a tool provided by the developer to modify files and processes in the system that 

correspond to critical failures specified in the second list. The evaluator shall verify that creating these critical 

failures causes the device to take the remediation actions specified in the first list. 

Test 97 - Prior to failure testing, the evaluator ensured the devices were in working order. Next the evaluator 

loaded a special software binary provided by the vendor in which the TOE’s power-up self-tests for its BoringSSL 

cryptographic module had been modified to intentionally fail.  After loading the binary, the evaluator found that 

the devices would boot to the Zebra "Splash" screen, but not further before boot cycling.  The evaluator attempted 

to reboot the phones and found that the boot behavior was consistent and all devices failed to proceed any 

further in the boot cycle.  

Next the evaluator locked the bootloader to enforce image integrity checks on startup.  With a correctly signed 

image, the evaluator confirmed each of the devices could successfully booth.  The evaluator then used a hex editor 

to modify the whitespace of one of the phone’s partitions (the boot partition).  The evaluator then unlocked the 

bootloader and flashed the image to the partition.  With the modified image installed and image integrity 

temporarily disabled, the evaluator rebooted the phone to ensure that the image was still bootable.  The evaluator 

then relocked the bootloader.  Upon attempting to reboot, the phone detected the corrupted image and refused 

to boot, showing an error message that the device was corrupt.   

2.6.12 RELIABLE TIME STAMPS  (MDFPP33:FPT_STM.1) 

 

2.6.12.1 MDFPP33:FPT_STM.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall examine the TSS to ensure that it lists each security 

function that makes use of time. The TSS provides a description of how the time is maintained and considered 

reliable in the context of each of the time related functions. This documentation must identify whether the TSF 

uses a NTP server or the carrier's network time as the primary time sources. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 173 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Section 6.6 of the ST states the TOE requires time for the Package Manager (which installs and verifies APK 

signatures and certificates), image verifier, wpa_supplicant, and Android Key Store applications. These TOE 

components obtain time from the TOE using system API calls [e.g., time() or gettimeofday()]. An application (unless 

a system application is residing in /system/priv-app or signed by the vendor) cannot modify the system time as 

mobile applications need the Android 'SET_TIME' permission to do so. Likewise, only a process with root privileges 

can directly modify the system time using system-level APIs. Further, this stored time is used both for the 

time/date tags in audit logs and is used to track inactivity timeouts that force the TOE into a locked state. 

By default, the TOE uses the Cellular Carrier time (obtained through the Carrier’s network time server) as the 

trusted time source. The admin can decide to not use cellular time as the trusted source but instead use a NTP 

server to set the trusted time. The default NTP server is a Google-hosted server source, but this can be changed by 

the admin to point to another trusted server. It is also possible to let the user set the date and time through the 

TOE’s user interface and use the internal clock to maintain a local (as opposed to externally checked) trusted time. 

Component Guidance Assurance Activities: The evaluator examines the operational guidance to ensure it 

describes how to set the time. 

The “Hardware Control” table entry in Section 3.6 (Common Criteria Related Settings) of the Admin Guide provides 

the API and settings for automatic time which can be enabled or disabled and allows the device to get time from 

the network. 

Component Testing Assurance Activities: Test 1: The evaluator uses the operational guide to set the time. The 

evaluator shall then use an available interface to observe that the time was set correctly. 

Test 1 - The evaluator turned off Wi-Fi to ensure the clock would not automatically update and examined the 

current time on the TOE by pressing down on the time in order to also see the date. The evaluator then changed 

the time and date by unchecking the automatic date/time setting and manually changing the time. The evaluator 

then re-enabled the automatic data and time setting and the Wi-Fi to cause the time to be reset. The evaluator 

observed the restored date and time. 

 

2.6.13 TSF CRYPTOGRAPHIC FUNCTIONALITY TESTING  (MDFPP33:FPT_TST_EXT.1) 

 

2.6.13.1 MDFPP33:FPT_TST_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall examine the TSS to ensure that it specifies the self-tests 

that are performed at start-up. This description must include an outline of the test procedures conducted by the 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 174 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

TSF (e.g., rather than saying 'memory is tested', a description similar to 'memory is tested by writing a value to 

each memory location and reading it back to ensure it is identical to what was written' shall be used). The TSS must 

include any error states that they TSF may enter when self-tests fail, and the conditions and actions necessary to 

exit the error states and resume normal operation. The evaluator shall verify that the TSS indicates these self-tests 

are run at start-up automatically, and do not involve any inputs from or actions by the user or operator. 

The evaluator shall inspect the list of self-tests in the TSS and verify that it includes algorithm self-tests. The 

algorithm self-tests will typically be conducted using known answer tests. 

Section 6.6 in the ST states that the TOE automatically performs known answer power on self-tests (POST) on its 

cryptographic algorithms to ensure that they are functioning correctly. Each component providing cryptography 

(application processor, and BoringSSL) performs known answer tests on their cryptographic algorithms to ensure 

they are working correctly. Should any of the tests fail, the TOE displays an error message stating “Boot Failure” 

and halts the boot process, displays an error to the screen, and forces a reboot of the device. 

Algorithm Implemented in Description 

AES encryption/decryption BoringSSL Comparison of known answer to calculated value 

ECDH key agreement BoringSSL Comparison of known answer to calculated value 

DRBG random bit generation BoringSSL Comparison of known answer to calculated value 

ECDSA sign/verify BoringSSL Comparison of known answer to calculated value 

HMAC-SHA BoringSSL Comparison of known answer to calculated value 

RSA sign/verify BoringSSL Comparison of known answer to calculated value 

SHA hashing BoringSSL Comparison of known answer to calculated value 

AES encryption/decryption Application Processor Comparison of known answer to calculated value 

HMAC-SHA Application Processor Comparison of known answer to calculated value 

DRBG random bit generation Application Processor Comparison of known answer to calculated value 

SHA hashing Application Processor Comparison of known answer to calculated value 

AES-XTS encrypt/decrypt Application Processor Comparison of known answer to calculated value 

 

All executable modules stored on the TOE are verified for integrity via dm-verity, a file system integrity checking 

module. The dm-verity feature looks at a block device, the underlying storage layer of the file system, and determines 

if it matches its expected configuration. It does this using a cryptographic hash tree. For every block (typically 4k), 

there is a SHA256 hash. This partition-wide integrity verification applies to the partition that houses all TSF function 

executable modules (BoringSSL and, by association, WLAN supplicant), guaranteeing that these modules remain 

unmodified upon boot. 

Should dm-verity’s integrity check return a failure, the boot process halts and the device reboots, preventing an 

attacker from successfully loading and running a compromised module onto the TOE. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: None Defined 

 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 175 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

2.6.14 TSF INTEGRITY CHECKING (POST-KERNEL)  

(MDFPP33:FPT_TST_EXT.2/POSTKERNEL) 

 

2.6.14.1 MDFPP33:FPT_TST_EXT.2.1/POSTKERNEL 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The evaluation activity shall be completed in conjunction with 

FPT_TST_EXT.2/PREKERNEL for all executable code specified. 

See MDFPP33:FPT_TST_EXT.2/PREKERNEL 

 

2.6.15 TSF INTEGRITY CHECKING (PRE-KERNEL)  

(MDFPP33:FPT_TST_EXT.2/PREKERNEL) 

 

2.6.15.1 MDFPP33:FPT_TST_EXT.2.1/PREKERNEL 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall verify that the TSS section of the ST includes a 

description of the boot procedures, including a description of the entire bootchain, of the software for the TSF's 

Application Processor. The evaluator shall ensure that before loading the bootloader(s) for the operating system 

and the kernel, all bootloaders and the kernel software itself is cryptographically verified. For each additional 

category of executable code verified before execution, the evaluator shall verify that the description in the TSS 

describes how that software is cryptographically verified. 

The evaluator shall verify that the TSS contains a justification for the protection of the cryptographic key or hash, 

preventing it from being modified by unverified or unauthenticated software. The evaluator shall verify that the 

TSS contains a description of the protection afforded to the mechanism performing the cryptographic verification. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 176 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The evaluator shall verify that the TSS describes each auxiliary boot mode available on the TOE during the boot 

procedures. The evaluator shall verify that, for each auxiliary boot mode, a description of the cryptographic 

integrity of the executed code through the kernel is verified before each execution. 

Section 6.6 of the ST states the TOE ensures a secure boot process in which the TOE verifies the digital signature of 

the bootloader software for the Application Processor (using a public key whose hash resides in the processor’s 

internal fuses) before transferring control. The bootloader, in turn, verifies the signature of the Linux kernel it loads. 

The TOE performs checking of the entire /system and /vendor partition through use of Android’s dm_verity 

mechanism (and while the TOE will still operate, it will log any blocks/executables that have been modified). 

Dm_verity looks at the underlying storage layer of the file system, and determine if it matches its expected 

configuration using a cryptographic hash tree. 

One can consider the TOE's bootloader mode as an auxiliary boot mode, and upon the user pressing a specific 

combination of physical buttons, the TOE halts its boot process while in the bootloader (and the automatic boot of 

Android.  Until the user has booted to Android, authenticated, and then elected to unlock the bootloader (a 

process that wipes all phone data), the TOE's bootloader mode only provides to additional status commands.  As 

the TOE always executes the bootloader during its normal boot process, the TOE always checks its integrity, and 

(typically automatically) then verifies the integrity of the Android kernel and boots it. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: Evaluation Activity Note: The following tests require the vendor to 

provide access to a test platform that provides the evaluator with tools that are typically not found on consumer 

Mobile Device products. 

The evaluator shall perform the following tests: 

Test 99: The evaluator shall perform actions to cause TSF software to load and observe that the integrity 

mechanism does not flag any executables as containing integrity errors and that the TOE properly boots. 

Test 100: The evaluator shall modify a TSF executable that is integrity protected and cause that executable to be 

successfully loaded by the TSF. The evaluator observes that an integrity violation is triggered and the TOE does not 

boot. (Care must be taken so that the integrity violation is determined to be the cause of the failure to load the 

module, and not the fact that the module was modified so that it was rendered unable to run because its format 

was corrupt). 

Test 101: [conditional] If the ST author indicates that the integrity verification is performed using a public key, the 

evaluator shall verify that the update mechanism includes a certificate validation according to FIA_X509_EXT.1. 

The evaluator shall digitally sign the TSF executable with a certificate that does not have the Code Signing purpose 

in the extendedKeyUsage field and verify that an integrity violation is triggered. The evaluator shall repeat the test 

using a certificate that contains the Code Signing purpose and verify that the integrity verification succeeds. 

Ideally, the two certificates should be identical except for the extendedKeyUsage field. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 177 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Tests 99 – See the tests under MDFPP33:FPT_NOT_EXT.1 where the evaluator enabled image integrity checks and 

demonstrated that the TOE could boot with a correctly signed image. 

Test 100 - See Test MDFPP33:FPT_NOT_EXT.1 test 97 where the evaluator used a hex editor to modify the image 

of one of the phone’s partitions (the boot partition).  The evaluator then attempted to boot the phone with the 

corrupted image and found the phone detected the error and refused to boot. 

Test 101 – Not applicable as the TOE does not use X.509 certificates for integrity. 

 

2.6.16 TSF CRYPTOGRAPHIC FUNCTIONALITY TESTING (WLAN CLIENT)  

(WLANC10:FPT_TST_EXT.3/WLAN) 

 

2.6.16.1 WLANC10:FPT_TST_EXT.3.1/WLAN 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.6.16.2 WLANC10:FPT_TST_EXT.3.2/WLAN 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall examine the TSS to ensure that it details the self tests 

that are run by the TSF on start-up; this description should include an outline of what the tests are actually doing 

(e.g., rather than saying 'memory is tested', a description similar to 'memory is tested by writing a value to each 

memory location and reading it back to ensure it is identical to what was written' shall be used). The evaluator 

shall ensure that the TSS makes an argument that the tests are sufficient to demonstrate that the TSF is operating 

correctly. 

The evaluator shall examine the TSS to ensure that it describes how to verify the integrity of stored TSF executable 

code when it is loaded for execution. The evaluator shall ensure that the TSS makes an argument that the tests are 

sufficient to demonstrate that the integrity of stored TSF executable code has not been compromised. The 

evaluator also ensures that the TSS (or the operational guidance) describes the actions that take place for 

successful (e.g. hash verified) and unsuccessful (e.g., hash not verified) cases. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 178 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Section 6.6 of the ST states the TOE automatically performs known answer power on self-tests (POST) on its 

cryptographic algorithms to ensure that they are functioning correctly. Each component providing cryptography 

(application processor, and BoringSSL) performs known answer tests on their cryptographic algorithms to ensure 

they are working correctly. Should any of the tests fail, the TOE displays an error message stating “Boot Failure” 

and halts the boot process, displays an error to the screen, and forces a reboot of the device. 

Algorithm Implemented in Description 

AES encryption/decryption BoringSSL Comparison of known answer to calculated value 

ECDH key agreement BoringSSL Comparison of known answer to calculated value 

DRBG random bit generation BoringSSL Comparison of known answer to calculated value 

ECDSA sign/verify BoringSSL Comparison of known answer to calculated value 

HMAC-SHA BoringSSL Comparison of known answer to calculated value 

RSA sign/verify BoringSSL Comparison of known answer to calculated value 

SHA hashing BoringSSL Comparison of known answer to calculated value 

AES encryption/decryption Application Processor Comparison of known answer to calculated value 

HMAC-SHA Application Processor Comparison of known answer to calculated value 

DRBG random bit generation Application Processor Comparison of known answer to calculated value 

SHA hashing Application Processor Comparison of known answer to calculated value 

AES-XTS encrypt/decrypt Application Processor Comparison of known answer to calculated value 

Table 7 Power-up Cryptographic Algorithm Known Answer Tests 

The WLAN's supplicant links against BoringSSL, so it utilizes the same KAT self-tests described above. All TSF-related 

modules are subject to these self-tests, which ensures that all TSF functionality is verified with each boot. 

All executable modules stored on the TOE are verified for integrity via dm-verity, a file system integrity checking 

module. The dm-verity feature looks at a block device, the underlying storage layer of the file system, and determines 

if it matches its expected configuration. It does this using a cryptographic hash tree. For every block (typically 4k), 

there is a SHA256 hash. This partition-wide integrity verification applies to the partition that houses all TSF function 

executable modules (BoringSSL and, by association, WLAN supplicant), guaranteeing that these modules remain 

unmodified upon boot. 

Should dm-verity’s integrity check return a failure, the boot process halts and the device reboots, preventing an 

attacker from successfully loading and running a compromised module onto the TOE 

Component Guidance Assurance Activities: The evaluator shall ensure that the operational guidance describes the 

actions that take place for successful (e.g. hash verified) and unsuccessful (e.g., hash not verified) cases. 

See MDFPP33:FPT_TST_EXT.1 for a description of the actions when a self-test fails. 

Component Testing Assurance Activities: The evaluator shall perform the following tests: 

Test 1: The evaluator shall perform the integrity check on a known good TSF executable and verify that the check is 

successful. 

Test 2: The evaluator shall modify the TSF executable, perform the integrity check on the modified TSF executable, 

and verify that the check fails. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 179 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 1 – See the tests under MDFPP33:FPT_NOT_EXT.1 where the evaluator enabled image integrity checks and 

demonstrated that the TOE could boot with a correctly signed image. 

Test 2 - See Test MDFPP33:FPT_NOT_EXT.1 test 97 where the evaluator used a hex editor to modify the image of 

one of the phone’s partitions (the boot partition).  The evaluator then attempted to boot the phone with the 

corrupted image and found the phone detected the error and refused to boot. 

 

2.6.17 TSF VERSION QUERY  (MDFPP33:FPT_TUD_EXT.1) 

 

2.6.17.1 MDFPP33:FPT_TUD_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.6.17.2 MDFPP33:FPT_TUD_EXT.1.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.6.17.3 MDFPP33:FPT_TUD_EXT.1.3 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: None Defined 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The evaluator shall establish a test environment consisting of the Mobile 

Device and any supporting software that demonstrates usage of the management functions. This can be test 

software from the developer, a reference implementation of management software from the developer, or other 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 180 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

commercially available software. The evaluator shall set up the Mobile Device and the other software to exercise 

the management functions according to the provided guidance documentation. 

Test 102: Using the AGD guidance provided, the evaluator shall test that the administrator and user can query: 

- The current version of the TSF operating system and any firmware that can be updated separately 

- The hardware model of the TSF 

- The current version of all installed mobile applications 

The evaluator must review manufacturer documentation to ensure that the hardware model identifier is sufficient 

to identify the hardware which comprises the device. 

Test 102 – The evaluator used the About Phone menu to check the TOE software and hardware versions.  The 

evaluator then demonstrated the version of an individual app can be displayed. The version was verified as 

described in section 1.1 of the Admin Guide. The evaluator repeated this test as an administrator. 

 

2.6.18 TSF UPDATE VERIFICATION  (MDFPP33:FPT_TUD_EXT.2) 

 

2.6.18.1 MDFPP33:FPT_TUD_EXT.2.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.6.18.2 MDFPP33:FPT_TUD_EXT.2.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.6.18.3 MDFPP33:FPT_TUD_EXT.2.3 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 181 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall verify that the TSS section of the ST describes all TSF 

software update mechanisms for updating the system software. The evaluator shall verify that the description 

includes a digital signature verification of the software before installation and that installation fails if the 

verification fails. The evaluator shall verify that all software and firmware involved in updating the TSF is described 

and, if multiple stages and software are indicated, that the software/firmware responsible for each stage is 

indicated and that the stages  which perform signature verification of the update are identified. 

The evaluator shall verify that the TSS describes the method by which the digital signature is verified and that the 

public key used to verify the signature is either hardware-protected or is validated to chain to a public key in the 

Trust Anchor Database. If hardware-protection is selected, the evaluator shall verify that the method of hardware-

protection is described and that the ST author has justified why the public key may not be modified by 

unauthorized parties. 

[conditional] If the ST author indicates that software updates to system software running on other processors is 

verified, the evaluator shall verify that these other processors are listed in the TSS and that the description 

includes the software update mechanism for these processors, if different than the update mechanism for the 

software executing on the Application Processor. 

[conditional] If the ST author indicates that the public key is used for software update digital signature verification, 

the evaluator shall verify that the update mechanism includes a certificate validation according to FIA_X509_EXT.1 

and a check for the Code Signing purpose in the extendedKeyUsage. 

Section 6.6 of the ST states the TOE verifies all OTA (Over The Air) updates to the TOE software (which includes 

baseband processor updates) using a public key chaining ultimately to the Root Public Key, a hardware protected 

key whose SHA-256 hash resides inside the application processor. Should this verification fail, the software update 

will fail and the update will not be installed. 

The application processor verifies the bootloader’s authenticity and integrity (thus tying the bootloader and 

subsequent stages to a hardware root of trust: the SHA-256 hash of the Root Public Key, which cannot be 

reprogrammed after the “write-enable” fuse has been blown). 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The evaluator shall verify that the developer has provided evidence that 

the following tests were performed for each available update mechanism: 

Test 103: The tester shall try to install an update without the digital signature and shall verify that installation fails. 

The tester shall attempt to install an update with digital signature, and verify that installation succeeds. 

Test 104: The tester shall digitally sign the update with a key disallowed by the device and verify that installation 

fails. The tester shall attempt to install an update signed with the allowed key and verify that installation succeeds. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 182 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 105: [conditional] The tester shall digitally sign the update with an invalid certificate and verify that update 

installation fails. The tester attempt to install an update that was digitally signed  using a valid certificate and a 

certificate that contains the purpose and verify that the update installation succeeds. 

Test 106: [conditional] The tester shall repeat these tests for the software executing on each processor listed in the 

first selection. The tester shall attempt to install an update without the digital signature and shall verify that 

installation fails. The tester shall attempt to install an update with digital signature, and verify that installation 

succeeds. 

Test 103 – The evaluator created several bad updates including a missing signature and invalid signature (disallowed 

key). The evaluator attempted to install each update and each failed.  The evaluator then installed a valid update 

and it was successful. 

Test 104 – This was tested as part of test 103. 

Test 105 – This test is not applicable (as the TOE does not claim X.509 certs for signed updates). 

Test 106 - The TOE’s OTA update mechanism (as tested in Test 1) can include software for both the Application 

processor as well as the baseband processor (radio).  See Test 103 for the results of an unsigned and signed 

update. 

 

2.6.19 APPLICATION SIGNING  (MDFPP33:FPT_TUD_EXT.3) 

 

2.6.19.1 MDFPP33:FPT_TUD_EXT.3.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall verify that the TSS describes how mobile application 

software is verified at installation. The evaluator shall ensure that this method uses a digital signature. 

Section 6.6 of the ST explains the Android OS on the TOE requires that all applications bear a valid signature before 

Android will install the application. Additionally, Android allows updates through Google Play updates, including 

both APK and APEX files. Both file types use Android APK signature format and the TOE verifies the accompanying 

signature prior to installing the file (additionally, Android ensures that updates to existing files use the same 

signing certificate). 

Component Guidance Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 183 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Component Testing Assurance Activities: Evaluation Activity Note: The following test does not have to be tested 

using the commercial application store. 

Test 107: The evaluator shall write, or the developer shall provide access to, an application. The evaluator shall try 

to install this application without a digitally signature and shall verify that installation fails. The evaluator shall 

attempt to install a digitally signed application, and verify that installation succeeds. 

Test 107 – The evaluator first obtained a valid application.  The evaluator then modified the APK to remove the 

APK Signature Block (located at the end of the file before the ZIP Central Directory section) using a hex editor.  The 

evaluator attempted to install the unsigned application and it failed. The evaluator then attempted to install the 

signed application and was successful. 

 

2.6.20 TRUSTED UPDATE VERIFICATION  (MDFPP33:FPT_TUD_EXT.6) 

 

2.6.20.1 MDFPP33:FPT_TUD_EXT.6.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall verify that the TSS describes the mechanism that 

prevents the TSF from installing software updates that are an older version that the currently installed version. 

Test 107 – The evaluator first obtained a valid application.  The evaluator then modified the APK to remove the 

APK Signature Block (located at the end of the file before the ZIP Central Directory section) using a hex editor.  The 

evaluator attempted to install the unsigned application and it failed. The evaluator then attempted to install the 

signed application and was successful. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The evaluator shall repeat the following tests to cover all allowed 

software update mechanisms as described in the TSS. For example, if the update mechanism replaces an entire 

partition containing many separate code files, the evaluator does not need to repeat the test for each individual 

file. 

Test 141: The evaluator shall attempt to install an earlier version of software (as determined by the manufacturer). 

The evaluator shall verify that this attempt fails by checking the version identifiers or cryptographic hashes of the 

privileged software against those previously recorded and checking that the values have not changed. 

Test 142: The evaluator shall attempt to install a current or later version and shall verify that the update succeeds. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 184 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 141 – The evaluator attempted to install a previous software version on each device.  In each case, the install 

produced an error and was denied. 

Test 142 - The evaluator attempted to install a current software version on each device as part of 

MDFPP33:FPT_TUD_EXT.2. The install was successful. 

2.7 TOE ACCESS (FTA) 

 

2.7.1 TSF- AND USER-INITIATED LOCKED STATE  (MDFPP33:FTA_SSL_EXT.1) 

 

2.7.1.1 MDFPP33:FTA_SSL_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.7.1.2 MDFPP33:FTA_SSL_EXT.1.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.7.1.3 MDFPP33:FTA_SSL_EXT.1.3 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall verify the TSS describes the actions performed upon 

transitioning to the locked state. 

Section 6.7 of the ST states the TOE transitions to its locked state either immediately after a User initiates a lock by 

pressing the power button (if configured) or after a (also configurable) period of inactivity, and as part of that 

transition, the TOE will display a lock screen (the KeyGuard lock screen) to obscure the previous contents and play 

a “lock sound” to indicate the phone’s transition; however, the TOE’S lock screen still displays email notifications, 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 185 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

calendar appointments, user configured widgets, text message notifications, the time, date, call notifications, 

battery life, signal strength, and carrier network. But without authenticating first, a user cannot perform any 

related actions based upon these notifications (they cannot respond to emails, calendar appointments, or text 

messages) other than the actions assigned in FIA_UAU_EXT.2.1 (see selections in section 5). 

Note that during power up, the TOE presents the user with an unlock screen stating “unlock for all features and 

data”.  While at this screen, the TOE has already decrypted Device Encrypted (DE) files within the userdata 

partition, but cannot yet decrypt the user’s Credential Encrypted (CE) files.   The user can only access a subset of 

device functionality before authenticating (e.g. the user can making an emergency call, receive incoming calls, 

receiving alarms, and any other “direct boot” functionality).  After the user enters their password, the TOE 

decrypts the user’s CE files within the user data partition and the user has unlocked the full functionality of the 

phone.  After this initial authentication, upon (re)locking the phone, the TOE presents the user with the previously 

mentioned KeyGuard lock screen.  While locked, the actions described in FIA_UAU_EXT.2.1 are available for the 

user to utilize. 

Component Guidance Assurance Activities: The evaluation shall verify that the AGD guidance describes the 

method of setting the inactivity interval and of commanding a lock. The evaluator shall verify that the TSS 

describes the information allowed to be displayed to unauthorized users. 

Section 3.6 (Common Criteria Related Settings) “Lockscreen” section provides administrators with the APIs and 

available values that can be used to set the inactivity timeout (Inactivity to lockout) and issue a remote lock 

(Remote Lock). 

Component Testing Assurance Activities: Test 108: The evaluator shall configure the TSF to transition to the 

locked state after a time of inactivity (FMT_SMF.1) according to the AGD guidance. The evaluator shall wait until 

the TSF locks and verify that the display is cleared or overwritten and that the only actions allowed in the locked 

state are unlocking the session and those actions specified in FIA_UAU_EXT.2. 

Test 109: The evaluator shall command the TSF to transition to the locked state according to the AGD guidance as 

both the user and the administrator. The evaluator shall wait until the TSF locks and verify that the display is 

cleared or overwritten and that the only actions allowed in the locked state are unlocking the session and those 

actions specified in FIA_UAU_EXT.2. 

Test 108 –  The TOE was alternately configured with 2 and 4 minute session timeout settings and after showing the 

configured time, the TOE was left inactive for the configured period of time to demonstrate that it locked at that 

time as expected.  

The lockscreen login display shows number of device status indicators and allows the following list of functions to 

be performed: 

• Take screen shots (stored internally) 

• Make emergency calls 

• Receive calls 

• Take pictures (stored internally) - unless the camera was disabled 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 186 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

• Turn the TOE off 

• Restart the TOE 

• Enable Airplane mode 

• Change the state of Wi-Fi, Bluetooth, Mobile Data (cellular data) 

• Adjust screen brightness 

• See notifications (note that some notifications identify actions, for example to view a screenshot; 
however, selecting those notifications highlights the password prompt and require the password to access 
that data) 

• Configure sound, vibrate, or mute 

• Set the volume (up and down) for ringtone 

• Change keyboard input method 

• Change live captions 

• Access notification widgets (without authentication): 
o Flashlight toggle 
o Do not disturb toggle 
o Auto rotate toggle 
o Sound (on, mute, vibrate) 
o Night light filter toggle 

 
Test 109 – The evaluator configured the TOE to lock immediately when the display is turned off. The evaluator 

turned off the display (pressed the power button briefly) to demonstrate that it locked immediately as expected.  

See MDFPP33:FMT_SMF.1 test case 77 function 6 where the administrative action of locking the device was 

tested. 

 

2.7.2 DEFAULT TOE ACCESS BANNERS  (MDFPP33:FTA_TAB.1) 

 

2.7.2.1 MDFPP33:FTA_TAB.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The TSS shall describe when the banner is displayed. 

Section 6.7 of the ST states the TOE can be configured to display a user-specified message on the Lock screen, and 

additionally an administrator can also set a Lock screen message using an MDM. 

Component Guidance Assurance Activities: None Defined 

Component Testing Assurance Activities: The evaluator shall also perform the following test: 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 187 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 110: The evaluator follows the operational guidance to configure a notice and consent warning message. The 

evaluator shall then start up or unlock the TSF. The evaluator shall verify that the notice and consent warning 

message is displayed in each instance described in the TSS. 

Test 110 - The evaluator used the MDM application to configure a banner message. The evaluator then pressed the 

power button to lock the TOE and then press it again to initiate an unlock action. The banner was found on the 

display. This banner is visible even after a reboot.  The evaluator also added a user supplied message and ensured 

that it was visible. 

 

2.7.3 WIRELESS NETWORK ACCESS  (WLANC10:FTA_WSE_EXT.1) 

 

2.7.3.1 WLANC10:FTA_WSE_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall examine the TSS to determine that it defines SSIDs as the 

attribute to specify acceptable networks. 

Section 6.7 of the ST states the TOE allows an administrator to specify (through the use of an MDM) a list of 

wireless networks (SSIDs) to which the user may direct the TOE to connect to, the security type, authentication 

protocol, and the client credentials to be used for authentication. When not enrolled with an MDM, the TOE allows 

the user to control to which wireless networks the TOE should connect, but does not provide an explicit list of such 

networks, rather the user may scan for available wireless network (or directly enter a specific wireless network), 

and then connect. Once a user has connected to a wireless network, the TOE will automatically reconnect to that 

network when in range and the user has enabled the TOE’s Wi-Fi radio. 

Component Guidance Assurance Activities: The evaluator shall examine the operational guidance to determine 

that it contains guidance for configuring the list of SSIDs that the WLAN Client is able to connect to. 

The table in Section 3.6 of the Admin Guide provides the Common Criteria Related Settings. 

• The Wi-Fi Settings entry in the table includes the API for configuring the security policy for each wireless 

network including setting the WLAN CA certificate, specifying the security type, selecting the 

authentication protocol and selecting the client credentials 

Additionally, section 5 of the Admin Guide describes the restrictions that an administrator can create regarding the 

list of acceptable Wi-Fi networks. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 188 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Component Testing Assurance Activities: The evaluator shall perform the following tests for each attribute: 

Test 1: The evaluator configures the TOE to allow a connection to a wireless network with a specific SSID. The 

evaluator configures the test environment such that the allowed SSID and an SSID that is not allowed are both 

'visible' to the TOE. The evaluator shall demonstrate that they can successfully establish a connection with the 

allowed SSID. The evaluator shall then attempt to establish a session with the disallowed SSID and observe that the 

attempt fails. 

The test for MDFPP33:FMT_MOF_EXT.1-t2-WL-1 shows the ability for the administrator to configure Wi-Fi 

connections while MDFPP33:FMT_MOF_EXT.1-t2-WL-2 shows the ability for the administrator to: 1) restrict the 

user's ability to modify Wi-Fi configurations and choose Wi-Fi networks, and 2) the administrator's ability to view 

and remove available Wi-Fi configurations. 

These settings together show that the administrator can create and delete (both admin and user created) Wi-Fi 

configurations (thus specifying allowed connections) and restrict the user's ability to control these connections, 

preventing connection to unwanted Wi-Fi networks. 

2.8 TRUSTED PATH/CHANNELS (FTP) 

 

2.8.1 BLUETOOTH ENCRYPTION  (BT10:FTP_BLT_EXT.1) 

 

2.8.1.1 BT10:FTP_BLT_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.8.1.2 BT10:FTP_BLT_EXT.1.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall verify that the TSS describes the use of encryption, the 

specific Bluetooth protocol(s) it applies to, and whether it is enabled by default. 

The evaluator shall verify that the TSS includes the protocol used for encryption of the transmitted data and the 

key generation mechanism used. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 189 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Section 6.8 of the ST states the TOE provides support for both Bluetooth BR/EDR and Bluetooth LE connections. 

The TSF uses 128-bit keys to encrypt Bluetooth connections (BR/EDR and LE) and does not allow the key length to 

be renegotiated below the length set at the pairing (the request to change the size will be rejected, and the 

connection terminated if this is not accepted). The TOE provides no method to configure alternate key sizes and all 

connections are encrypted by default. 

Component Guidance Assurance Activities: The evaluator shall verify that the operational guidance includes 

instructions on how to configure the TOE to require the use of encryption during data transmission (unless this 

behavior is enforced by default). 

Bluetooth encryption is enabled by default.  No configuration is required by the administrator. 

Component Testing Assurance Activities: There are no test EAs for this component. Testing for this SFR is 

addressed through the evaluation of FTP_BLT_EXT.3/BR and, if claimed, FTP_BLT_EXT.3/LE. 

See BT10:FTP_BLT_EXT.3/BR and BT10:FTP_BLT_EXT.3/LE 

 

2.8.2 PERSISTENCE OF BLUETOOTH ENCRYPTION  (BT10:FTP_BLT_EXT.2) 

 

2.8.2.1 BT10:FTP_BLT_EXT.2.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall verify that the TSS describes the TSF's behavior if a 

remote device stops encryption while connected to the TOE. 

Section 6.8 of the ST states the TOE requires an encrypted connection between itself and another Bluetooth 

device, and should a remote device stop encryption, the TSF will terminate the connection.  The remote device can 

only attempt to re-establish a new, encrypted channel (and if the connection were no encrypted, the TOE would 

refuse the connection). 

Component Guidance Assurance Activities: The evaluator shall verify that the operational guidance describes how 

to enable/disable encryption (if configurable). 

Bluetooth encryption is enabled by default.  No configuration is required by the administrator. 

Component Testing Assurance Activities: Test 1: The evaluator shall perform the following steps using a Bluetooth 

protocol analyzer to observe packets pertaining to the encryption key size: 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 190 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Step 1: Initiate pairing with the TOE from a remote Bluetooth device that has been configured to have a minimum 

encryption key size that is equal to or greater than that of the TOE. 

Step 2: After pairing has successfully finished and while a connection exists between the TOE and the remote 

device, turn off encryption on the remote device. This can be done using commercially-available tools. 

Step 3: Verify that the TOE either restarts encryption with the remote device or terminates the connection with 

the remote device. 

The evaluator established a Bluetooth connection between two devices and observed that encryption was enabled 

in the packet capture. The evaluator then disabled encryption on one device and demonstrated the connection 

was terminated. 

 

2.8.3 BLUETOOTH ENCRYPTION PARAMETERS (BR/EDR) - PER TD0640  

(BT10:FTP_BLT_EXT.3/BR) 

 

2.8.3.1 BT10:FTP_BLT_EXT.3.1/BR 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall examine the TSS and verify that it specifies the minimum 

key size for BR/EDR encryption, whether this value is configurable, and the mechanism by which the TOE will not 

negotiate keys sizes smaller than the minimum. 

Section 6.8 of the ST states the TOE provides support for both Bluetooth BR/EDR and Bluetooth LE connections. 

The TSF uses 128-bit keys to encrypt Bluetooth connections (BR/EDR and LE) and does not allow the key length to 

be renegotiated below the length set at the pairing (the request to change the size will be rejected, and the 

connection terminated if this is not accepted). The TOE provides no method to configure alternate key sizes and all 

connections are encrypted by default. 

Component Guidance Assurance Activities: The evaluator shall verify that the guidance includes instructions on 

how to configure the minimum encryption key size for BR/EDR encryption, if configurable. 

Bluetooth encryption is enabled by default including the key size.  No configuration is required by the 

administrator. 

Component Testing Assurance Activities: The evaluator shall perform the following tests: 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 191 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 1: The evaluator shall perform the following steps using a Bluetooth protocol analyzer to observe packets 

pertaining to the encryption key size: 

Step 1: Initiate BR/EDR pairing with the TOE from a remote Bluetooth device that has been configured to have a 

minimum encryption key size that is equal to or greater than that of the TOE. This can be done using certain 

commercially-available tools that can send the appropriate command to certain commercially-available Bluetooth 

controllers. 

Step 2: Use a Bluetooth packet sniffer to verify that the encryption key size negotiated for the connection is at 

least as large as the minimum encryption key size defined for the TOE. 

Test 2: (conditional): If the encryption key size is configurable, configure the TOE to support a different minimum 

key size, then repeat Test 1 and verify that the negotiated key size is at least as large as the new minimum value. 

Test 3: The evaluator shall perform the following steps using a Bluetooth protocol analyzer to observe packets 

pertaining to the encryption key size: 

Step 1: Initiate BR/EDR pairing with the TOE from a remote Bluetooth device that has been configured to have a 

maximum encryption key size of 1 byte. This can be done using certain commercially-available tools that can send 

the appropriate command to certain commercially-available Bluetooth controllers. 

Step 2: Verify that the encryption key size suggested by the remote device is not accepted by the TOE and that the 

connection is not completed. 

Test 1 – The evaluator established a BT/BR connection with another device. The evaluator was able to identify the 

negotiated Linkkey was 16 bytes in length as expected. 

Test 2 - Not applicable - the TOE does not support changing the Bluetooth/BR key size. 

Test 3 – The evaluator used a test device that required a 1-byte link key. The TOE failed on the attempt to connect 

with a 1-byte key. 

 

2.8.4 BLUETOOTH ENCRYPTION PARAMETERS (LE)  (BT10:FTP_BLT_EXT.3/LE) 

 

2.8.4.1 BT10:FTP_BLT_EXT.3.1/LE 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 192 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Component TSS Assurance Activities: The evaluator shall examine the TSS and verify that it specifies the minimum 

key size for LE encryption, whether this value is configurable, and the mechanism by which the TOE will not 

negotiate keys sizes smaller than the minimum. 

Section 6.8 of the ST states the TOE provides support for both Bluetooth BR/EDR and Bluetooth LE connections. 

The TSF uses 128-bit keys to encrypt Bluetooth connections (BR/EDR and LE) and does not allow the key length to 

be renegotiated below the length set at the pairing (the request to change the size will be rejected, and the 

connection terminated if this is not accepted). The TOE provides no method to configure alternate key sizes and all 

connections are encrypted by default. 

Component Guidance Assurance Activities: The evaluator shall verify that the guidance includes instructions on 

how to configure the minimum encryption key size for LE encryption, if configurable. 

Bluetooth encryption is enabled by default including the key size.  No configuration is required by the 

administrator. 

Component Testing Assurance Activities: The evaluator shall perform the following tests: 

Test 1: The evaluator shall perform the following steps using a Bluetooth protocol analyzer to observe packets 

pertaining to the encryption key size: 

Step 1: Initiate LE pairing with the TOE from a remote Bluetooth device that has been configured to have a 

minimum encryption key size that is equal to or greater than that of the TOE. This can be done using certain 

commercially-available tools that can send the appropriate command to certain commercially-available Bluetooth 

controllers. 

Step 2: Use a Bluetooth packet sniffer to verify that the encryption key size negotiated for the connection is at 

least as large as the minimum encryption key size defined for the TOE. 

Test 2: (conditional): If the encryption key size is configurable, configure the TOE to support a different minimum 

key size, then repeat Test 1 and verify that the negotiated key size is at least as large as the new minimum value. 

Test 3: The evaluator shall perform the following steps using a Bluetooth protocol analyzer to observe packets 

pertaining to the encryption key size: 

Step 1: Initiate LE pairing with the TOE from a remote Bluetooth device that has been configured to have a 

maximum encryption key size of 1 byte. This can be done using certain commercially-available tools that can send 

the appropriate command to certain commercially-available Bluetooth controllers. 

Step 2: Verify that the encryption key size suggested by the remote device is not accepted by the TOE and that the 

connection is not completed. 

Test 1 – The evaluator created an application to establish a BT/LE connection. The evaluator was able to identify 

the negotiated Linkkey was 16 bytes in length as expected. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 193 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 2 - Not applicable - the TOE does not support changing the Bluetooth/LE key size. 

Test 3 – The evaluator used a test device that required a 1-byte link key. The TOE failed on the attempt to connect 

with a 1-byte key. 

 

2.8.5 TRUSTED CHANNEL COMMUNICATION  (MDFPP33:FTP_ITC_EXT.1) 

 

2.8.5.1 MDFPP33:FTP_ITC_EXT.1.1 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.8.5.2 MDFPP33:FTP_ITC_EXT.1.2 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.8.5.3 MDFPP33:FTP_ITC_EXT.1.3 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall examine the TSS to determine that it describes the 

details of the TOE connecting to access points, VPN Gateways, and other trusted IT products in terms of the 

cryptographic protocols specified in the requirement, along with TOE-specific options or procedures that might not 

be reflected in the specifications. The evaluator shall also confirm that all protocols listed in the TSS are specified 

and included in the requirements in the ST. 

If OTA updates are selected, the TSS shall describe which trusted channel protocol is initiated by the TOE and is 

used for updates. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 194 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Section 6.8 explains the TOE provides secured (encrypted and mutually authenticated) communication channels 

between itself and other trusted IT products through the use of IEEE 802.11-2012, 802.1X, and EAP-TLS and TLS, 

HTTPS.  The TOE permits itself and applications to initiate communicate via the trusted channel, and the TOE 

initiates communications via the WPA3/WPA2 (IEEE 802.11-2012, 802.1X with EAP-TLS) trusted channel for 

connection to a wireless access point.  The TOE provides mobile applications and MDM agents access to HTTPS and 

TLS via published APIs, thus facilitating administrative communication and configured enterprise connections. 

These APIs are accessible to any application that needs an encrypted end-to-end trusted channel. 

OTA is not selected. 

Component Guidance Assurance Activities: The evaluator shall confirm that the operational guidance contains 

instructions for establishing the connection to access points, VPN Gateways, and other trusted IT products. 

Section 2.5 of the Admin Guide details VPN connectivity. Section 5 and 6 describe Wi-Fi and VPN configuration. 

Component Testing Assurance Activities: The evaluator shall also perform the following tests for each protocol 

listed: 

Test 111: The evaluator shall ensure, for each communication channel with an authorized IT entity, the channel 

data are not sent in plaintext and that a protocol analyzer identifies the traffic as the protocol under testing. 

Test 112: [conditional] If IPsec is selected, the evaluator shall ensure that the TOE is able to initiate 

communications with a VPN Gateway, setting up the connections as described in the operational guidance and 

ensuring that communication is successful. 

Test 113: [conditional] If OTA updates are selected, the evaluator shall trigger an update request according to the 

operational guidance and shall ensure that the communication is successful. 

Test 114: For any other selected protocol (not tested in Test 1, 2, or 3), the evaluator shall ensure that the TOE is 

able to initiate communications with a trusted IT product using the protocol, setting up the connection as 

described in the operational guidance and ensuring that the communication is successful. 

Test 111 -This has been tested in other test cases: 

• For 802.11-2012 encryption, see Test Case WLANC10:FCS_CKM.1/WPA test case 2 where Wi-Fi encryption 

is demonstrated 

• For 802.1X and EAP-TLS, see Test Case WLANC10:FCS_TLSC_EXT.1/WLAN test case 1 where this 

encryption is demonstrated 

• For mutually-authenticated TLS and HTTPS, see Test Case PKGTLS11:FCS_TLSC_EXT.4.1 test case 2 where 

this is demonstrated for both TLS + HTTP and HTTPS.  

Test 112 – Not applicable. 

Test 113 – Not applicable. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 195 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Test 114 – Not applicable since all the secure channels are otherwise claimed and tested 

 

2.8.6 TRUSTED CHANNEL COMMUNICATION (WIRELESS LAN)  

(WLANC10:FTP_ITC_EXT.1/WLAN) 

 

2.8.6.1 WLANC10:FTP_ITC_EXT.1.1/WLAN 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.8.6.2 WLANC10:FTP_ITC_EXT.1.2/WLAN 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

 

2.8.6.3 WLANC10:FTP_ITC_EXT.1.3/WLAN 

TSS Assurance Activities: None Defined 

Guidance Assurance Activities: None Defined 

Testing Assurance Activities: None Defined 

Component TSS Assurance Activities: The evaluator shall examine the TSS to determine that it describes the 

details of the TOE connecting to an access point in terms of the cryptographic protocols specified in the 

requirement, along with TOE-specific options or procedures that might not be reflected in the specification. The 

evaluator shall also confirm that all protocols listed in the TSS are specified and included in the requirements in the 

ST. 

Section 6.8 of the ST states the TOE provides secured (encrypted and mutually authenticated) communication 

channels between itself and other trusted IT products through the use of IEEE 802.11-2012, 802.1X, and EAP-TLS. 

The TOE permits itself and applications to initiate communicate via the trusted channel, and the TOE initiates 

communications via the WPA2/WPA3 (IEEE 802.11-2012, 802.1X with EAP-TLS) trusted channel for connection to a 

wireless access point. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 196 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Component Guidance Assurance Activities: The evaluator shall confirm that the operational guidance includes 

instructions for establishing the connection to the access point and that it includes recovery instructions should a 

connection be unintentionally broken. 

As indicated previously in this report, the Admin Guide specifies the path for configuration of Wi-Fi, CA certificates, 

EAP-TLS, and client credentials. The Admin Guide also contains detailed information about the corresponding APIs. 

Section 5 (Wi-Fi Configuration) in the Admin Guide states that if a Wi-Fi connection unintentionally terminates, the 

end user will need to reconnect to re-establish the session. 

Component Testing Assurance Activities: The evaluator shall perform the following tests: 

Test 1: The evaluator shall ensure that the TOE is able to initiate communications with an access point using the 

protocols specified in the requirement by setting up the connections as described in the operational guidance and 

ensuring that communications are successful. 

Test 2: The evaluator shall ensure, for each communication channel with an authorized IT entity, the channel data 

is not sent in plaintext. 

Test 3: The evaluator shall ensure, for each communication channel with an authorized IT entity, modification of 

the channel data is detected by the TOE. 

Test 4: The evaluators shall physically interrupt the connection from the TOE to the access point (e.g., moving the 

TOE host out of range of the access point, turning the access point off). The evaluators shall ensure that 

subsequent communications are appropriately protected, at a minimum in the case of any attempts to 

automatically resume the connection or connect to a new access point. 

Further evaluation activities are associated with the specific protocols. 

Test 1 - For 802.11-2012 encryption, see Test Case WLANC10:FCS_CKM.1/WPA test case 2 where Wi-Fi encryption 

is demonstrated. For 802.1X and EAP-TLS, see Test Case WLANC10:FCS_TLSC_EXT.1/WLAN test case 1 where this 

encryption is demonstrated. 

Test 2 – See WLANC10:FCS_CKM.1/WPA test case 2 where it can be seen that packets are protected using 802.11 

once a connection is made with EAPOL based on a pre-shared key. For EAP-TLS, see Test Case 

WLANC10:FCS_TLSC_EXT.1/WLAN test 1 where this encryption is demonstrated. Additionally, a wireless packet 

capture was provided showing the 802.11 packets in the air are encrypted once a connection is made with EAPOL 

based on an EAP-TLS. 

Test 3 – This SFR addresses each communication channel claimed for this requirement.  The TOE may wirelessly 

interface with any of these physical or data link media layers and the resulting channel data is handled with the 

remaining network abstraction layers, starting at the network layer.  The TOE’s network layer implementation is 

abstracted to the point where it is independent to the previous network layers, therefore it behaves the exact 

same whether it is connected with 802.11 or 802.1X/EAP-TLS.  For this test, the evaluator connected the TOE to an 

EAP-TLS network and tested the TOEs ability to detect modifications to the network layer and below by causing 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 197 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

random modifications to traffic.  Since this is the exact same mechanism used regardless of communication 

channel, the test results are valid for each connection. 

Test 4 – The evaluator connected to an access point and then interrupted power to the access point.  When the 

power was restored to the access point, the TOE and access point re-created a secure channel. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 198 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

3. PROTECTION PROFILE SAR ASSURANCE ACTIVITIES 

The following sections address assurance activities specifically defined in the claimed Protection Profile that 

correspond with Security Assurance Requirements. 

3.1 DEVELOPMENT (ADV) 

 

3.1.1 BASIC FUNCTIONAL SPECIFICATION  (ADV_FSP.1) 

Assurance Activities: There are no specific evaluation activities associated with these SARs, except ensuring the 

information is provided. The functional specification documentation is provided to support the evaluation activities 

described in Section 5.1 Security Functional Requirements, and other activities described for AGD, ATE, and AVA 

SARs. The requirements on the content of the functional specification information is implicitly assessed by virtue of 

the other evaluation activities being performed; if the evaluator is unable to perform an activity because there is 

insufficient interface information, then an adequate functional specification has not been provided. 

3.2 GUIDANCE DOCUMENTS (AGD) 

 

3.2.1 OPERATIONAL USER GUIDANCE  (AGD_OPE.1) 

Assurance Activities: Some of the contents of the operational guidance are verified by the evaluation activities in 

Section 5.1 Security Functional Requirements and evaluation of the TOE according to the [CEM]. The following 

additional information is also required. 

The operational guidance shall contain a list of natively installed applications and any relevant version numbers. If 

any third party vendors are permitted to install applications before purchase by the end user or enterprise, these 

applications shall also be listed.The operational guidance shall contain instructions for configuring the 

cryptographic engine associated with the evaluated configuration of the TOE. It shall provide a warning to the 

administrator that use of other cryptographic engines was not evaluated nor tested during the CC evaluation of the 

TOE. 

The documentation must describe the process for verifying updates to the TOE by verifying a digital signature. The 

evaluator shall verify that this process includes the following steps: 

- Instructions for obtaining the update itself. This should include instructions for making the update accessible to 

the TOE (e.g., placement in a specific directory). 

- Instructions for initiating the update process, as well as discerning whether the process was successful or 

unsuccessful. This includes generation of the hash/digital signature. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 199 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The TOE will likely contain security functionality that does not fall in the scope of evaluation under this PP. The 

operational guidance shall make it clear to an administrator which security functionality is covered by the 

evaluation activities. 

Section 3.4 (Cryptographic Module Identification) in the Admin Guide identifies the cryptographic components of 

the TOE which provide the CAVP certified algorithms. This section states that the use of other cryptographic 

components beyond those listed was neither evaluated nor tested during the TOE’s Common Criteria evaluation.  

No additional configuration is needed for the cryptographic modules in order to be compliant. 

Section 7 (Secure Update Process) in the Admin Guide states that Over the Air (OTA) updates (which includes 

baseband processor updates) use a public key chaining ultimately to the Root Public Key, a hardware protected key 

whose SHA-256 hash resides inside the application processor. Should this verification fail, the software update will 

fail and the update will not be installed. Additionally, the devices also provide roll-back protection for OTA updates 

to prevent a user from installing a prior/previous version of software by check.  The user will get a notification 

when an update is made available.  No special configuration is required to ensure a secure update process. 

Section 3.1 (Entering into Common Criteria State) in the Admin Guide provides the settings which must be 

configured to put the device into Common Criteria Mode.  This includes enabling certain features and disabling 

other features that are not include in the evaluated configuration. 

Section 3.6 (Common Criteria Related Settings) in the Admin Guide describes the security settings available in the 

evaluated configuration to the user and/or administrator. 

3.2.2 PREPARATIVE PROCEDURES  (AGD_PRE.1) 

Assurance Activities: As indicated in the introduction above, there are significant expectations with respect to the 

documentationâ€”especially when configuring the operational environment to support TOE functional 

requirements. The evaluator shall check to ensure that the guidance provided for the TOE adequately addresses all 

platforms claimed for the TOE in the ST. 

Section 1.1 (Equivalent Devices) in the Admin Guide identifies the evaluated devices included in the evaluated 

configuration. Section 3.1 explains how to configure the devices into Common Criteria Mode. 

3.3 LIFE-CYCLE SUPPORT (ALC) 

 

3.3.1 LABELING OF THE TOE  (ALC_CMC.1) 

Assurance Activities: The evaluator shall check the ST to ensure that it contains an identifier (such as a product 

name/version number) that specifically identifies the version that meets the requirements of the ST. Further, the 

evaluator shall check the AGD guidance and TOE samples received for testing to ensure that the version number is 

consistent with that in the ST. If the vendor maintains a web site advertising the TOE, the evaluator shall examine 

the information on the web site to ensure that the information in the ST is sufficient to distinguish the product. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 200 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The evaluator verified that the ST, TOE and Guidance are all labeled with the same versions. The evaluator checked 

the TOE version during testing by examining the actual devices used for testing. 

3.3.2 TOE CM COVERAGE  (ALC_CMS.1) 

Assurance Activities: The evaluator shall ensure that the developer has identified (in public-facing development 

guidance for their platform) one or more development environments appropriate for use in developing 

applications for the developer's platform. For each of these development environments, the developer shall 

provide information on how to configure the environment to ensure that buffer overflow protection mechanisms 

in the environments are invoked (e.g., compiler and linker flags). The evaluator shall ensure that this 

documentation also includes an indication of whether such protections are on by default, or have to be specifically 

enabled. 

The evaluator shall ensure that the TSF is uniquely identified (with respect to other products from the TSF vendor), 

and that documentation provided by the developer in association with the requirements in the ST is associated 

with the TSF using this unique identification. 

See section 3.3.1 above for an explanation of how all CM items are identified. In regards to development 

environments, developers who wish to develop apps for the devices can go to 

http://developer.android.com/index.html 

3.3.3 TIMELY SECURITY UPDATES  (ALC_TSU_EXT.1) 

Assurance Activities: The evaluator shall verify that the TSS contains a description of the timely security update 

process used by the developer to create and deploy security updates. The evaluator shall verify that this 

description addresses the TOE OS, the firmware, and bundled applications, each. The evaluator shall also verify 

that, in addition to the TOE developer's process, any carrier or other third-party processes are also addressed in 

the description. The evaluator shall also verify that each mechanism for deployment of security updates is 

described. 

The evaluator shall verify that, for each deployment mechanism described for the update process, the TSS lists a 

time between public disclosure of a vulnerability and public availability of the security update to the TOE patching 

this vulnerability, to include any third-party or carrier delays in deployment. The evaluator shall verify that this 

time is expressed in a number or range of days. 

The evaluator shall verify that this description includes the publicly available mechanisms (including either an email 

address or website) for reporting security issues related to the TOE. The evaluator shall verify that the description 

of this mechanism includes a method for protecting the report either using a public key for encrypting email or a 

trusted channel for a website. 

The evaluator shall verify that the description includes where users can seek information about the availability of 

new security updates including details of the specific public vulnerabilities corrected by each update. The evaluator 

shall verify that the description includes the minimum amount of time that the TOE is expected to be supported 

with security updates, and the process by which users can seek information about when the TOE is no longer 

expected to receive security updates. 

http://developer.android.com/index.html


 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 201 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

Section 6.6 of the ST states that Google supports a bug filing system for the Android OS outlined here: 

https://source.android.com/setup/contribute/report-bugs. This allows developers or users to search for, file, and 

vote on bugs that need to be fixed. This helps to ensure that all bugs that affect large numbers of people get 

pushed up in priority to be fixed. 

The vendor also supports their own form of bug reporting, via their website: zebra.com/us/en/about-zebra/contact-

zebra/contact-tech-support.html 

Google publishes monthly security updates which the vendor reviews and implements on their devices, releasing 

as a part of their own monthly security update cycle. Once updates are available, they are immediately made 

available on Zebra’s website here: https://www.zebra.com/us/en/support-downloads.html. 

 

3.4 TESTS (ATE) 

 

3.4.1 INDEPENDENT TESTING - CONFORMANCE  (ATE_IND.1) 

Assurance Activities: The evaluator shall prepare a test plan and report documenting the testing aspects of the 

system. The test plan covers all of the testing actions contained in the [CEM] and the body of this PP's Evaluation 

Activities. While it is not necessary to have one test case per test listed in an evaluation activity, the evaluator must 

document in the test plan that each applicable testing requirement in the ST is covered. 

The test plan identifies the platforms to be tested, and for those platforms not included in the test plan but 

included in the ST, the test plan provides a justification for not testing the platforms. This justification must 

address the differences between the tested platforms and the untested platforms, and make an argument that the 

differences do not affect the testing to be performed. It is not sufficient to merely assert that the differences have 

no affect; rationale must be provided. If all platforms claimed in the ST are tested, then no rationale is necessary. 

The test plan describes the composition of each platform to be tested, and any setup that is necessary beyond 

what is contained in the AGD documentation. It should be noted that the evaluator is expected to follow the AGD 

documentation for installation and setup of each platform either as part of a test or as a standard pre-test 

condition. This may include special test drivers or tools. For each driver or tool, an argument (not just an assertion) 

should be provided that the driver or tool will not adversely affect the performance of the functionality by the TOE 

and its platform. This also includes the configuration of the cryptographic engine to be used. The cryptographic 

algorithms implemented by this engine are those specified by this PP and used by the cryptographic protocols 

being evaluated (IPsec, TLS/HTTPS, SSH). 

The test plan identifies high-level test objectives as well as the test procedures to be followed to achieve those 

objectives. These procedures include expected results. The test report (which could just be an annotated version 

of the test plan) details the activities that took place when the test procedures were executed, and includes the 

actual results of the tests. This shall be a cumulative account, so if there was a test run that resulted in a failure; a 

fix installed; and then a successful re-run of the test, the report would show a 'fail' and 'pass' result (and the 

supporting details), and not just the 'pass' result. 

https://source.android.com/setup/contribute/report-bugs
https://www.zebra.com/us/en/about-zebra/contact-zebra/contact-tech-support.html
https://www.zebra.com/us/en/about-zebra/contact-zebra/contact-tech-support.html
https://www.zebra.com/us/en/support-downloads.html


 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 202 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The evaluator created a Detailed Test Report (DTR) to address all aspects of this requirement.  The DTR discusses 

the test configuration, test cases, expected results, and test results. The following diagram indicates the test 

environment. 

 

The evaluator used the following test tools: Windows, Linux, Putty, Wireshark, Freeradius, OpenSSL, web server, 

adb, HxD, strongswan, tcpdump, strongswan, and Gossamer and Zebra developed test programs. 

3.5 VULNERABILITY ASSESSMENT (AVA) 

 

3.5.1 VULNERABILITY SURVEY  (AVA_VAN.1) 

Assurance Activities: The evaluator shall generate a report to document their findings with respect to this 

requirement. This report could physically be part of the overall test report mentioned in ATE_IND, or a separate 

document. The evaluator performs a search of public information to find vulnerabilities that have been found in 

mobile devices and the implemented communication protocols in general, as well as those that pertain to the 

particular TOE. The evaluator documents the sources consulted and the vulnerabilities found in the report. 

For each vulnerability found, the evaluator either provides a rationale with respect to its nonapplicability, or the 

evaluator formulates a test (using the guidelines provided in ATE_IND) to confirm the vulnerability, if suitable. 

Suitability is determined by assessing the attack vector needed to take advantage of the vulnerability. If exploiting 

the vulnerability requires expert skills and an electron microscope, for instance, then a test would not be suitable 

and an appropriate justification would be formulated. 

The vulnerability analysis is in the Detailed Test Report (DTR) prepared by the evaluator.  The vulnerability analysis 

includes a public search for vulnerabilities.  None of the public search for vulnerabilities uncovered any residual 

vulnerability. 



 
 

  Version 0.2, 07/26/2024 
  
 

   

  
GSS CCT Assurance Activity Report Page 203 of 203  © 2024 Gossamer Security Solutions, Inc. 
Document: AAR-VID11486  All rights reserved. 

The public search for vulnerabilities conducted did not uncover any residual vulnerability. 

The evaluator searched the National Vulnerability Database (https://web.nvd.nist.gov/vuln/search), Vulnerability 
Notes Database (http://www.kb.cert.org/vuls/) on 7/24/2024.  The evaluator started the search from the 
beginning of 2023 to ensure overlap with previous evaluations of the product noting that anything from before 
that date would have been previously resolved.  The evaluator searched with the following search terms:  
"Android", "Android 13", "BoringSSL", "Android Locksettings service KBKDF", "QTI Crypto Engine Core", "QTI Inline 
Crypto Engine", "QTI Random Number Generator", "Zebra Technologies Corporation", "Zebra", "CC600", "CC6000", 
"ET40", "ET40HC", "ET45", "ET45HC", "ET51", "ET56", "ET60", "ET65", "HC20", "HC50", "L10A", "MC20", "MC9300", 
"PS20", "TC15", "TC21", "TC21-HC", "TC22", "TC26", "TC26-HC", "TC27", "TC52", "TC52-HC", "TC52ax", "TC52x", 
"TC52x-HC", "TC53", "TC57", "TC57x", "TC58", "TC72", "TC73", "TC77", "TC78", "TC83", "TN28", "VC83", "WT6300", 
"SD660", "SDM6375", "QCM5430", "QCM6490", "WCN3990", "WCN3980", "BCM43752", "WCN3988", 
"WCN6856". 
 
 

https://web.nvd.nist.gov/vuln/search
http://www.kb.cert.org/vuls/

